55. Parametrix for a Degenerate Parabolic Equation

By Chisato IWASAKI^{*)} and Nobuhisa IWASAKI^{**)} (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

§1. Introduction. The purpose of this note is to construct a parametrix of a Cauchy problem 1) for a parabolic equation with a degenerate principal symbol:

1) $\begin{cases} \left(\frac{\partial}{\partial t} + p(x, D)\right) u(x, t) = f(x, t) & \text{on } \mathbb{R}^n \times [0, T], \\ u(x, 0) = g(x) & \text{on } \mathbb{R}^n, \end{cases}$

p(x, D) being a pseudo-differential operator whose symbol $p(x, \xi)$, independent of t, is in $S_{1,0}^m = L_{1/2}^m$ and has an asymptotic behavior 2);

2) $p(x,\xi) \sim p_m(x,\xi) + p_{m-1}(x,\xi) + \cdots$ as $|\xi| \to \infty$, $p_{\nu}(x,\xi)$ being positively homogeneous in ξ of order ν for $|\xi| \ge 1$ and the principal symbol p_m being real non-negative (m > 1).

Melin's result [4] proves the existence of fundamental solution E for 1) under some condition for subprincipal symbols using functional methods. Our method is direct. Under the same condition a complex phase function is given at first in a simple function of a principal symbol and a subprincipal symbol, and amplitudes follow inductively. Consequently a parametrix represented by pseudo-differential operators in $S_{1/2}^0$ is gotten. The parametrix implies the existence of fundamental solution and also Melin's result as a corollary.

§2. Notations. Here we employ the Weyl symbol for pseudodifferential operators, that is, a symbol $a(x, \xi)$ defines an operator a(x, D) by 3):

3)
$$a(x,D)u(x)=(2\pi)^{-n}\int\int e^{i(x-y)\xi}a\left(\frac{x+y}{2},\xi\right)u(y)dyd\xi$$
 for $u\in C_0^{\infty}$.

Hence p_{m-1} is the subprincipal symbol in usual sence. $\nabla^k a$ stands for a section of $T^{**}(T^*\mathbf{R}^n)$, k-th symmetric tensor of $T^*(T^*\mathbf{R}^n)$, defined by 4) with respect to the canonical coordinate of $T^*\mathbf{R}^n$:

4) $\sum_{|\alpha+\beta|=k} c_{\alpha\beta}^k a_{\beta}^{(\alpha)} (d\xi)^{\alpha} (dx)^{\beta};$

 $a_{\alpha\beta}^k = k! / \alpha! \beta!$ and $a_{(\beta)}^{(\alpha)} = \langle \xi \rangle^{(|\alpha| - |\beta|)/2} \partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi).$

 σ^1 is the canonical two form $d\xi \wedge dx$ on $T^* \mathbb{R}^n$. σ^k is its extension onto $T^k(T^* \mathbb{R}^n) \times T^k(T^* \mathbb{R}^n)$. J_k is the identification map of $T^{*k}(T^* \mathbb{R}^n)$ to $T^k(T^* \mathbb{R}^n)$ defined by $\sigma^k(u, J_k f) = \langle u, f \rangle$. A bilinear form $\langle J_k f, g \rangle$ on $T^{*k}(T^* \mathbb{R}^n)$ is denoted by $\sigma_k(f, g)$. A linear map defined by $\nabla^k a$ from

^{*)} Department of Mathematics, Osaka University.

^{**)} Research Institute for Mathematical Sciences, Kyoto University.