55. Parametrix for a Degenerate Parabolic Equation

By Chisato Iwasaki*) and Nobuhisa Iwasaki**)
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

§ 1. Introduction. The purpose of this note is to construct a parametrix of a Cauchy problem 1) for a parabolic equation with a degenerate principal symbol:

1) $\begin{cases}\left(\frac{\partial}{\partial t}+p(x, D)\right) u(x, t)=f(x, t) & \text { on } \boldsymbol{R}^{n} \times[0, T], \\ u(x, 0)=g(x) & \text { on } \boldsymbol{R}^{n},\end{cases}$
$p(x, D)$ being a pseudo-differential operator whose symbol $p(x, \xi)$, independent of t, is in $S_{1,0}^{m}=L_{1 / 2}^{m}$ and has an asymptotic behavior 2);
2) $p(x, \xi) \sim p_{m}(x, \xi)+p_{m-1}(x, \xi)+\cdots$ as $|\xi| \rightarrow \infty$, $p_{\nu}(x, \xi)$ being positively homogeneous in ξ of order ν for $|\xi| \geqq 1$ and the principal symbol p_{m} being real non-negative ($m>1$).

Melin's result [4] proves the existence of fundamental solution E for 1) under some condition for subprincipal symbols using functional methods. Our method is direct. Under the same condition a complex phase function is given at first in a simple function of a principal symbol and a subprincipal symbol, and amplitudes follow inductively. Consequently a parametrix represented by pseudo-differential operators in $S_{1 / 2}^{0} 1 / 2=L_{0}^{0}$ is gotten. The parametrix implies the existence of fundamental solution and also Melin's result as a corollary.
§2. Notations. Here we employ the Weyl symbol for pseudodifferential operators, that is, a symbol $a(x, \xi)$ defines an operator $a(x, D)$ by 3$)$:
3) $\quad a(x, D) u(x)=(2 \pi)^{-n} \iint e^{i(x-y) \xi} a\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi$ for $u \in C_{0}^{\infty}$.

Hence p_{m-1} is the subprincipal symbol in usual sence. $\nabla^{k} a$ stands for a section of $T^{* k}\left(T^{*} R^{n}\right), k$-th symmetric tensor of $T^{*}\left(T^{*} \boldsymbol{R}^{n}\right)$, defined by 4) with respect to the canonical coordinate of $T^{*} \boldsymbol{R}^{n}$:
4)

$$
\begin{aligned}
& \sum_{|\alpha+\beta|=k} c_{\alpha \beta}^{k} a_{(\beta)}^{(\alpha)}(d \xi)^{\alpha}(d x)^{\beta} ; \\
& c_{\alpha \beta}^{k}=k!/ \alpha!\beta!\quad \text { and } \quad a_{(\beta)}^{(\alpha)}=\langle\xi\rangle^{(|\alpha|-|\beta| \mid / 2} \partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi) .
\end{aligned}
$$

σ^{1} is the canonical two form $d \xi \wedge d x$ on $T^{*} \boldsymbol{R}^{n} . \quad \sigma^{k}$ is its extension onto $T^{k}\left(T^{*} \boldsymbol{R}^{n}\right) \times T^{k}\left(T^{*} \boldsymbol{R}^{n}\right) . \quad J_{k}$ is the identification map of $T^{* k}\left(T^{*} \boldsymbol{R}^{n}\right)$ to $T^{k}\left(T^{*} R^{n}\right)$ defined by $\sigma^{k}\left(u, J_{k} f\right)=\langle u, f\rangle$. A bilinear form $\left\langle J_{k} f, g\right\rangle$ on $T^{* k}\left(T^{*} \boldsymbol{R}^{n}\right)$ is denoted by $\sigma_{k}(f, g)$. A linear map defined by $\nabla^{k} a$ from

[^0]
[^0]: *) Department of Mathematics, Osaka University.
 **) Research Institute for Mathematical Sciences, Kyoto University.

