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1. We are concerned with the following problem which was
already considered by H. P. McKean [4] for the Brownian motion: in
what manner does the path of a diffusion on a manifold wind around
a fixed point or a hole asymptotically? For this purpose, we shall
define a stochastic version of the intersection number. As is well-
known, the usual intersection number can be represented by the inte-
gral of a differential double 1-form with singularity ([1]). Although
the path of the diffusion is not smooth, we can define its intersection
number with a chain by using the integral of the 1-form along the
path defined in [2] (see also [3]). We then study the asymptotic be-
haviors of such random intersection numbers to get some solutions of
the above mentioned problem.

2. Let M be a d-dimensional connected orientable Riemannian
manifold with a Riemannian metric g and 4 be the Laplace-Beltrami
operator corresponding to g. Let L=4/2+b, where b is a C* vector
field on M. Consider the minimal diffusion process X=(X,, P;) on M
corresponding to L. For any continuous mapping c: [0, {]-M, we
denote by ¢[0, t] the curve determined by ¢: ¢[0, t]={c(s); 0=s=t}. We
regard c[0, t] as a singular 1-chain ([5]).

To define the intersection number, we prepare some notations. We
principally use the notations of de Rham’s book ([1]). Let 9 be the
space of square integrable currents. Set 9,={T ¢ 9; T is homologous
to zero}, 9,={T € D; T is cohomologous to zero} and D,;={T e D; T is
harmonic}. Then 9=9,+9,+9D,. Let H,, H,, H; be the projections
on D, D,, D, respectively. For any l-current T which is continuous
in mean at infinity, we define H,T by (H,T, ¢)=(T,H;$), p € c-N9,
1=1,2,3. Then T can be decomposed uniquely as follows: T'=H,T
+H,T+H,T. Denote by h,(x,y) the kernel of H,, 1=1,2,3. Let e(x, %)
=#,h,(x, y) be the adjoint form of &, (as 1-form of ). Then eis C~
if z=y. It is known that e(x, ¥) can be written locally as follows. Let
4 be the Hodge-Kodaira’s Laplacian acting on 1-forms. We can choose
a domain U on which a fundamental solution y(z,¥y) for da=p exists.
Let o(x, ¥) be a C~ function supported in UX U with (i) 001, (ii)



