6. On the Intersection Number of the Path of a Diffusion and Chains

By Shojiro Manabe
Department of Mathematics, College of General Education, Osaka University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 16, 1979)

1. We are concerned with the following problem which was already considered by H. P. McKean [4] for the Brownian motion: in what manner does the path of a diffusion on a manifold wind around a fixed point or a hole asymptotically? For this purpose, we shall define a stochastic version of the intersection number. As is wellknown, the usual intersection number can be represented by the integral of a differential double 1-form with singularity ([1]). Although the path of the diffusion is not smooth, we can define its intersection number with a chain by using the integral of the 1-form along the path defined in [2] (see also [3]). We then study the asymptotic behaviors of such random intersection numbers to get some solutions of the above mentioned problem.
2. Let M be a d-dimensional connected orientable Riemannian manifold with a Riemannian metric g and Δ be the Laplace-Beltrami operator corresponding to g. Let $L=\Delta / 2+b$, where b is a C^{∞} vector field on M. Consider the minimal diffusion process $X=\left(X_{t}, P_{x}\right)$ on M corresponding to L. For any continuous mapping $c:[0, t] \rightarrow M$, we denote by $c[0, t]$ the curve determined by $c: c[0, t]=\{c(s) ; 0 \leqq s \leqq t\}$. We regard $c[0, t]$ as a singular 1-chain ([5]).

To define the intersection number, we prepare some notations. We principally use the notations of de Rham's book ([1]). Let \bar{D} be the space of square integrable currents. Set $\overline{\mathscr{D}}_{1}=\{T \in \overline{\mathscr{D}} ; T$ is homologous to zero $\}, \overline{\mathcal{D}}_{2}=\{T \in \overline{\mathscr{D}} ; T$ is cohomologous to zero $\}$ and $\mathscr{D}_{3}=\{T \in \overline{\mathscr{D}} ; T$ is harmonic $\}$. Then $\overline{\mathscr{D}}=\overline{\mathscr{D}}_{1}+\overline{\mathscr{D}}_{2}+\mathscr{D}_{3}$. Let H_{1}, H_{2}, H_{3} be the projections on $\overline{\mathscr{D}}_{1}, \overline{\mathscr{D}}_{2}, \mathscr{D}_{3}$ respectively. For any 1-current T which is continuous in mean at infinity, we define $H_{i} T$ by $\left(H_{i} T, \phi\right)=\left(T, H_{i} \phi\right), \phi \in C^{\infty} \cap \overline{\mathscr{D}}$, $i=1,2,3$. Then T can be decomposed uniquely as follows: $T=H_{1} T$ $+H_{2} T+H_{3} T$. Denote by $h_{i}(x, y)$ the kernel of $H_{i}, i=1,2,3$. Let $e(x, y)$ $=*_{y} h_{1}(x, y)$ be the adjoint form of h_{1} (as 1-form of y). Then e is C^{∞} if $x \neq y$. It is known that $e(x, y)$ can be written locally as follows. Let Δ be the Hodge-Kodaira's Laplacian acting on 1-forms. We can choose a domain U on which a fundamental solution $\gamma(x, y)$ for $\Delta \alpha=\beta$ exists. Let $\sigma(x, y)$ be a C^{∞} function supported in $U \times U$ with (i) $0 \leqq \sigma \leqq 1$, (ii)

