53. Perturbation of Domains and Green Kernels of Heat Equations. III

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

§ 1. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary γ . Let $\rho(x)$ be a smooth function on γ and ν_x be the exterior unit normal vector at $x \in \gamma$. For sufficiently small $\varepsilon \geq 0$, let Ω_{ε} be the bounded domain whose boundary γ_{ε} is defined by

$$\gamma_s = \{x + \varepsilon \rho(x) \nu_x; x \in \gamma\}.$$

Let $G_{\epsilon}(x, y)$ be the Green's function of the Dirichlet boundary value problem of the Laplacian on Ω_{ϵ} . We abbreviate $G_{0}(x, y)$ as G(x, y). Put

$$\delta^k G(x,y) = rac{\partial^k}{\partial \varepsilon^k} G_{\epsilon}(x,y)|_{\epsilon=0} \quad ext{ for } k=1,2.$$

Put

$$\nabla_z a(z) \cdot \nabla_z b(z) = \sum_{j=1}^n \frac{\partial a}{\partial z_j}(z) \frac{\partial b}{\partial z_j}(z) \quad \text{for any } a(z), \, b(z) \in \mathcal{C}^{\infty}(\Omega).$$

By $H_i(z)$ we denote the first mean curvature of γ at z. Then, Garabedian-Schiffer [1] proved the following:

(1.1)
$$\delta^{2}G(x,y) = -\int_{\tau} \frac{\partial G(x,z)}{\partial \nu_{z}} \frac{\partial G(y,z)}{\partial \nu_{z}} (n-1)H_{1}(z)\rho(z)^{2}d\sigma_{z} + 2\int_{\sigma} \nabla_{z}\delta^{1}G(x,z) \cdot \nabla_{z}\delta^{1}G(y,z)dz.$$

Here $\partial/\partial \nu_z$ denotes the exterior normal derivative with respect to z and $d\sigma_z$ denotes the surface element of γ .

Let $U_{\epsilon}(x, y, t)$ denote the fundamental solution of the heat equation with the Dirichlet boundary condition on γ_{ϵ} . Put

$$\delta^{k}U(x, y, t) = \frac{\partial^{k}}{\partial \varepsilon^{k}} U_{\varepsilon}(x, y, t)|_{\varepsilon=0}$$

for k=1,2. We abbreviate $\delta^{i}U(x, y, t)$ as $\delta U(x, y, t)$. In [2] and [3] the author gave explicit representation of $\delta U(x, y, t)$, that is

(1.2)
$$\delta U(x, y, t) = \int_0^t d\tau \int_\tau \frac{\partial U(x, z, t-\tau)}{\partial \nu_z} \frac{\partial U(y, z, \tau)}{\partial \nu_z} \rho(z) d\sigma_z$$

We can prove the following

Theorem 1. For
$$x, y \in \Omega, t > 0$$

 $\delta^2 U(x, y, t)$

$$= -\int_0^t d\tau \int_\tau \frac{\partial U(x, z, t-\tau)}{\partial \nu_z} \frac{\partial U(y, z, \tau)}{\partial \nu_z} (n-1) H_1(z) \rho(z)^2 d\sigma_z$$
(1.3)