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1. Let X) be a bounded domain in R with smooth boundary r.
Let p(x) be a smooth function on r and be the exterior unit normal
vector at x e r. For sufficiently small >0, let 9, be the bounded
domain whose boundary r, is defined by, {x+(x); x e }.

Let G(x, y) be the Green’s function of the Dirichlet boundary value
problem o the Laplacian on 9,. We abbreviate Go(x, y) as G(x, y). Put

8G(x, y)=-G(x, y)1=o 2or k= 1, 2.

Put

’a(z). gb(z)=.] -o(z) (z) or any a(z), b(z) e C(f2).

By H(z) we denote the first mean curvature o r at z. Then,
Garabedian-Schiffer [1] proved the ollowing

82G(x, y)=

_
_x,_)__ G(y, z) (n- 1)H(z)p(z)da

(1.1)
2 8G(x, z). fiG(y, z)dz.
d

Here 3/3, denotes the exterior normal derivative with respect to z and
da denotes the surface element o2

Let U(x, y, t) denote the undamental solution of the heat equation
with the Dirichlet boundary condition on y,. Put

2or k= 1, 2. We abbreviate 3U(x, y, t) as 3U(x, y, t). In [2] and [3]
the author gve explicit representation of U(x, y, t), that is

We can prove the ollowing

Theorem 1. For x, y e g, tO
U(x, y, t)

=--f: d OU(x, z, t-) OU(y, z, ) (n-1)H(z)o(z)d,
(1.3)


