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The present article is a direct continuation of our preceding note
[1], where deformation theory was discussed in connection with the
Riemann-Hilbert problem for Euclidean Dirac equations. We are
particularly interested in the step function limit of the matrix M(&);
in other words the Green’s function w(x, 2’) is now required to be
multi-valued, having a monodromic property w(x, 2")—e**“w(x, x)
when continued around 2-codimensional submanifolds (“Bags”) B,
={f,=0,7,=0}. Formally the variational formula XIII-(7) [1] then
takes the form
(1) Lowe =3[ | avwenimLw, )
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with ()= .(y)+if..(y). However the meaning of (1) needs to be
made precise, since w(zx, 2’) has a regular singularity along B,. In this
note we perform this procedure in the 2-dimensional (massless and
massive) case, and show that the resulting equations are exactly those
obtained previously ((2.3.38) in [2] and (8.8.53) in [3]).

We use the following convention :

71=(1 1), 72=(Z. _z>, 32(3 a), 9=0,—i3,, D=0,+1id,.

1. The Riemann-Hilbert problem for the Euclidean Dirac equa-
tion in the sense of [1] has a special feature when the space dimension
is 2 and the mass vanishes. Let us restate the problem in this case.
As in [1] we denote by D* a bounded domain in X®™°=R?, and let D~
=X®c—D* dD*=I. We set z=(2'+1i2?)/2, 2=(2'—i2%)/2. Given a
real analytic N XN matrix M on I', we are to find a 2N X 2N matrix

(W, W,
w“(w3 w)
such that
(2) (i) —(9 a)w(z,z;z’,z’):a(x‘—x“)&(xz—x’z) (z,2' e T)
(ii) Iw(z,:?;z’,z’)[:O(-‘—iT) (2}—>o0)
(ii) w*,C;2,2)=ME,Dw¢,C;7,72) €& Del



