36. Studies on Holonomic Quantum Fields. XIV

By Michio Jimbo and Tetsuji Mrwa Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1979)

The present article is a direct continuation of our preceding note [1], where deformation theory was discussed in connection with the Riemann-Hilbert problem for Euclidean Dirac equations. We are particularly interested in the step function limit of the matrix $M(\xi)$; in other words the Green's function $w\left(x, x^{\prime}\right)$ is now required to be multi-valued, having a monodromic property $w\left(x, x^{\prime}\right) \mapsto e^{2 \pi i L_{\nu}} w\left(x, x^{\prime}\right)$ when continued around 2-codimensional submanifolds ("Bags") B_{ν} $=\left\{f_{\nu}=0, \bar{f}_{\nu}=0\right\}$. Formally the variational formula XIII-(7) [1] then takes the form

$$
\begin{align*}
\frac{1}{2 \pi i} \delta w\left(x, x^{\prime}\right) & =\sum_{\nu} \int_{X^{\mathrm{Euc}}} d^{s} y \cdot w(x, y) \Delta_{\nu}(y) L_{\nu} w\left(y, x^{\prime}\right) \tag{1}\\
\Delta_{\nu}(y) & =\frac{1}{2 i}\left(\partial f_{\nu}(y) \delta \bar{f}_{\nu}(y)-\delta f_{\nu}(y) \partial \bar{f}_{\nu}(y)\right) \delta\left(f_{\nu 1}(y)\right) \delta\left(f_{\nu 2}(y)\right)
\end{align*}
$$

with $f_{\nu}(y)=f_{\nu 1}(y)+i f_{\nu 2}(y)$. However the meaning of (1) needs to be made precise, since $w\left(x, x^{\prime}\right)$ has a regular singularity along B_{ν}. In this note we perform this procedure in the 2-dimensional (massless and massive) case, and show that the resulting equations are exactly those obtained previously ((2.3.38) in [2] and (3.3.53) in [3]).

We use the following convention:

$$
\gamma^{1}=\left(1_{1}^{1}\right), \gamma^{2}=\left(i^{-i}\right), \not \partial=\left(\bar{\partial}^{\partial}\right), \partial=\partial_{1}-i \partial_{2}, \bar{\partial}=\partial_{1}+i \partial_{2} .
$$

1. The Riemann-Hilbert problem for the Euclidean Dirac equation in the sense of [1] has a special feature when the space dimension is 2 and the mass vanishes. Let us restate the problem in this case. As in [1] we denote by D^{+}a bounded domain in $X^{\mathrm{Euc}}=\boldsymbol{R}^{2}$, and let D^{-} $=X^{\mathrm{Euc}}-\bar{D}^{+}, \partial D^{+}=\Gamma$. We set $z=\left(x^{1}+i x^{2}\right) / 2, \bar{z}=\left(x^{1}-i x^{2}\right) / 2$. Given a real analytic $N \times N$ matrix M on Γ, we are to find a $2 N \times 2 N$ matrix

$$
w=\left(\begin{array}{ll}
w_{1} & w_{2} \tag{2}\\
w_{3} & w_{4}
\end{array}\right)
$$

such that
(i) $-\left(\bar{\partial}^{\partial}\right) w\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)=\delta\left(x^{1}-x^{\prime 1}\right) \delta\left(x^{2}-x^{\prime 2}\right) \quad\left(x, x^{\prime} \notin \Gamma\right)$
(ii) $\left|w\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)\right|=O\left(\frac{1}{|z|}\right) \quad(|z| \rightarrow \infty)$
(iii) $\quad w\left(\zeta^{+}, \bar{\zeta}^{+} ; z^{\prime}, \bar{z}^{\prime}\right)=M(\zeta, \bar{\zeta}) w\left(\zeta^{-}, \bar{\zeta}^{-} ; z^{\prime}, \bar{z}^{\prime}\right) \quad(\zeta, \bar{\zeta}) \in \Gamma$

