31. On the Unique Maximal Idempotent Ideals of Non-Idempotent Multiplication Rings

By Takasaburo UKEGAWA
Faculty of General Education, Kobe University
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1979)

In the preceding paper [5], we have defined multiplication rings, shortly M-rings, as rings s.t. for any ideals α , β , with $\alpha < \beta$, there exist ideals c, c', s.t. $\alpha = bc = c'b$; here "<" means a proper inclusion. An Mring is called non-idempotent, if $R > R^2$. We have proved that the unique maximal idempotent ideal δ of a non-idempotent M-ring can be obtained as an intersection of some ideal sequence $\{\delta_{\alpha}\}_{\wedge}$, where δ_{α} are defined inductively ([5], Theorem 5): $\delta = \bigcap_{\alpha \in \Lambda} \delta_{\alpha}$. In § 1, we shall prove that b is an essential submodule of R, both as a left and also as a right R-module, and at the end of the section we shall give an example of a non-idempotent M-ring with $b \neq \{0\}$. If moreover R is left Noetherian, and let N denote the Jacobson radical of R, then by Theorem 5 (i) [5], $N\subseteq \emptyset$ or $N=\emptyset$ for some ordinal α and some positive integer j. If $N=\emptyset$ or $N = b_a^j$, then by Theorem 5 (ii) [5] and Nakayama's lemma $b = \{0\}$, so we have to consider the case $N < \delta$ only; so in §2 we consider left Noetherian non-idempotent M-rings, and prove that any ideal, which is maximal in the set of ideals properly contained in b, is a prime ideal of R.

1. Non-idempotent M-rings. Lemma 1. Let R be a non-idempotent M-ring, and let α be any ideal, s.t. $\alpha \subseteq \delta$ then $\delta \alpha = \alpha \delta = \alpha$; furthermore for an ideal δ' s.t. $\delta \subseteq \delta'$, $\alpha \delta' = \delta' \alpha = \alpha$.

Proof. If $\alpha = b$, there is nothing to prove. If $\alpha < b$, then $\alpha = bb = b'b$ for some ideals b, b', therefore $\alpha b = b'b \cdot b = b'b = \alpha$. Similarly $b\alpha = \alpha$.

Lemma 2. Let R be a non-idempotent M-ring, and let N < b, then $N = \bigcap_{I \in \mathbb{R}} I = \bigcap_{J \in \mathbb{R}} J$, where \mathfrak{M} and \mathfrak{N} denote the set of maximal left ideals of R, and all maximal right ideals of R respectively.

Proof. In general, $NR \subseteq \bigcap_{I \in \mathfrak{M}} I \subseteq N$, and $\bigcap_{I \in \mathfrak{M}} I$ is an ideal of R. By Lemma 1 N = NR, hence equality holds.

Theorem 1. Let R be a non-idempotent M-ring. If $R \neq N$, then $N = \bigcap_{I \in \mathbb{R}} I = \bigcap_{J \in \mathbb{R}} J$, where \mathfrak{M} , \mathfrak{R} is the same as Lemma 2.

Proof. By Proposition 4 [5], N=R or $N\subseteq \emptyset$. If $N=\emptyset$, then $\emptyset = \emptyset R = NR \subseteq \bigcap_{I \in \mathfrak{M}} I \subseteq \emptyset$, therefore $\emptyset = N = \bigcap_{I \in \mathfrak{M}} I$. If $N < \emptyset$, the results follow by Lemma 2.

Lemma 3. Let R be a non-idempotent M-ring, and let I be any maximal left ideal of R, then Ib=b. The similar results hold for right