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In the preceding paper [5], we have defined multiplication rings,
shortly M-rings, as rings s.t. for any ideals a, 5, with a5, here exist
ideals, c, c’, s.t. a=5c=c’5 here "" means, a proper inclusion. An M-
ring is called non-idempotent, i RR. We have proved that the
unique maximal idempotent ideal b of a non-idempotent M-ring can be
obtained as an intersection o some ideal sequence {b.}, where b are
defined inductively ([5], Theorem 5)" b=.e b.. In 1, we shall prove
that b is an essential submodule of R, both as a left and also as a right
R-module, and at the end o the section we shall give an example o a
non-idempotent M-ring with b:/: {0}. If moreover R is left Noetherian,
and let N denote the Jacobson radical of R, then by Theorem 5 (i) [5],
Nb or N=b for some ordinal and some positive integer ]. I N=b
or N= bg, then by Theorem 5 (ii) [5] and Nakayama’s lemma b= {0}, so
we have to consider the case Nb only; so in 2 we consider left
Noetherian non-idempotent M-rings, and prove that any ideal, which
is maximal in the set of ideals properly contained in b, is a prime ideal
of R.

1. Non.idempotent M.rings. Lemma 1. Let R be a non-
idempotent M-ring, and let a be any ideal, s.t. b then
furthermore for an ideal b’ s.t. bb’,

Proof. If = b, there is nothing to prove. If a b, then a=
for some ideals , ’, therefore ab=b’b.b=b’b=a. Similarly

Lemma 2. Let R be a non-idempotent M-ring, and let N b, then
N=I=sJ, where !g and denote the set of maximal left
ideals of R, and all maximal right ideals of R respectively.

Proof. In general, NRIsIN, and isI is an ideal of R.
By Lemma I N=NR, hence equality holds.

Theorem 1. Let R be a non-idempotent M-ring. If R:N, then
N= I: J, where , is the same as Lemma 2.

Proog. By Proposition 4 [5], N=R or N___b. If N=b, then

=bR:NRsIb, therefore b=N=sI. If Nb, the results
follow by Lemma 2.

Lemma 3. Let R be a non-idempotent M-ring, and let I be any

maximal let ideal o/ R, then Ib= b. The similar results hold for right


