29. The Spectrum of the Laplacian and Smooth Deformation of the Riemannian Metric

By Masao Tanikawa

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1979)

§1. Introduction. Let M be an n-dimensional compact connected C^{∞} manifold (with or without boundary ∂M). Every Riemannian metric g of M determines the Laplace-Beltrami operator Δ_g . We consider the eigenvalue problem for $-\Delta_g$ (under Dirichlet condition);

(1.1)
$$\begin{cases} (-\Delta_g - \lambda)u(x) = 0\\ u(x) = 0 \end{cases} \quad (\text{if } \partial M \neq \phi).$$

Let $0 \le \lambda_0 \le \lambda_1 \le \lambda_2 \cdots$ be the eigenvalues of the problem (1.1). These are determined by the metric g. The totality of Riemannian metrics of class C^{∞} which differ from a fixed metric g_0 only on an open set $U \subset M$ forms a separable Fréchet manifold B.

Theorem A. If dim $M=n\geq 2$, then there exists a residual subset $\Gamma \subset B$ such that all eigenspaces of $-\Delta_g$ are one dimensional for any $g \in \Gamma$.

We call a subset Γ residual if it is a countable intersection of open dense subsets. Since a residual set is dense and a second category by virtue of Baire's theorem, Theorem A implies that for almost all $g \in B$ the eigenvalues of problem (1.1) are all simple.

In our proof we follow the idea of Uhlenbeck [6], who has already obtained the similar result in the case that those metrics are of class C^{k} $(n+3 \le k \le +\infty)$. But the first transversality theorem of her can not be applied to our case, since B is not a Banach manifold. We need the following Fréchet manifold version of the transversality theorem.

Theorem B. Let E, F and G be strong ILH manifolds of class C^r . Assume that E and F are separable. Let the mapping $f: E \times F \rightarrow G$ be a C^r -strong ILH mapping satisfying the following conditions;

(a) For every $u \in E \times F$, every $k \in N(d)$,

(1.2) $\|(Df^k)_u \delta u\|_k \ge C_u \|\delta u\|_k - D_u^k \|\delta u\|_{k-1}$, where $\delta u \in T_u(E \times F)$, C_u and D_u^k are positive constants and C_u is independent of k.

(b) There exists $p \in G$ such that p is a regular value of f. (That is for any $u \in f^{-1}(p)$ the Fréchet derivative $(Df)_u$ is onto.)

(c) For every $b \in F$, $f_b = f(, b) : E \to G$ is a strong ILH Fredholm mapping with index $\leq r$.

Then the set $\{b \in F ; p \text{ is a regular value of } f_b\}$ is residual in F.