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1. Introduction. Let M be an n-dimensional compact connected
C manifold (with or without boundary 3M). Every Riemannian
metric g of M determines the Laplace-Beltrami operator z/q. We con-
sider the eigenvalue problem for --/q (under Dirichlet condition)

(1.1) (----)u(x)-O
/u(x) 0 (if M=/= ).

Let 0g20g2g2.. be the eigenvalues of the problem (1.1). These are
determined by the metric g. The totality of Riemannian metrics of
class C which differ from a fixed metric go only on an open set UcM
forms a separable Fr6chet manifold B.

Theorem A. If dim M=n>_2, then there exists a residual subset
FcB such that all eigenspaces of --zl are one dimensional for any
geF.

We call a subset F residual if it is a countable intersection of open
dense subsets. Since a residual set is dense and a second category by
virtue of Baire’s theorem, Theorem A implies that for almost all g e B
the eigenvalues of problem (1.1) are all simple.

In our proof we follow the idea of Uhlenbeck [6], who has already
obtained the similar result in the case that those metrics are of class
C (n+3_<k< +oo). But the first transversality theorem of her can
not be applied to our case, since B is not a Banach manifold. We need
the following Fr6chet manifold version of the transversality theorem.

Theorem B. Let E, F and G be strong ILH manifolds of class
Cr. Assume that E and F are separable. Let the mapping f’EF
--+G be a Cr-strong ILH mapping satisfying the following conditions;

(a) For every u e E F, every k e N(d),
(1.2) II(Df)u I_C IIull-D IIu[]_,
where 3u e T(EF), Cu and D are positive constants and Cu is in-
dependent of k.

(b) There exists p e G such that p is a regular value of f (That
is for any u e f-(p) the Frgchet derivative (Df) is onto.)

(c) For every b e F, f f(, b)" E-.G is a strong ILH Fredholm
mapping with index r.
Then the set {b e F; p is a regular value of f} is residual in F.


