26. The Hodge Conjecture and the Tate Conjecture for Fermat Varieties

By Tetsuji Shioda
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1979)

Throughout the paper, $X_{m}^{n}(p)$ will denote the Fermat variety of dimension n and of degree m in characteristic p ($p=0$ or a prime number not dividing m), defined by the equation

(1)
 $$
x_{0}^{m}+x_{1}^{m}+\cdots+x_{n+1}^{m}=0 .
$$

The purpose of this note is to report our results on the Hodge Conjecture for $X_{m}^{n}(0)$ and the Tate Conjecture for $X_{m}^{n}(p), p>0$. By means of the inductive structure of $X_{m}^{n}(p)$ with respect to n ($[3, \S 1]$), we can reduce the proof of these conjectures to the verification of certain purely arithmetic conditions on m, n and p. After formulating the condition in $\S 1$, we state the main results in $\S \S 2$ and 3 . We give the brief sketch of the proof in $\S 4$.

Detailed accounts will be published elsewhere.
\S 1. The arithmetic condition. Fix $m>1$, and let H be a cyclic subgroup of order f of $(\boldsymbol{Z} / m)^{\times}$. We consider the following system of linear Diophantine equations in x_{1}, \cdots, x_{m-1} and y

$$
\begin{equation*}
\sum_{\nu=1}^{m-1} \sum_{u \in H}\langle t u \nu\rangle x_{\nu}=f m y \quad \text { for all } t \in(\boldsymbol{Z} / m)^{\times} \tag{2}
\end{equation*}
$$

where, for $a \in \boldsymbol{Z} / m-\{0\},\langle a\rangle$ denotes the representative of a between 1 and $m-1$. Let $M_{m}(H)$ denote the additive semigroup of non-negative integer solutions ($x_{1}, \cdots, x_{m-1} ; y$) of (2) satisfying moreover the following congruence:

$$
\begin{equation*}
\sum_{\nu=1}^{m-1} \nu x_{\nu} \equiv 0 \quad(\bmod m) . \tag{3}
\end{equation*}
$$

For an element $\xi=\left(x_{1}, \cdots, x_{m-1} ; y\right)$ of $M_{m}(H)$, we call y the length of ξ and write $y=\|\xi\|$. (We exclude the trivial solution ($0, \cdots, 0 ; 0$).) If H^{\prime} is a cyclic subgroup of H, then $M_{m}\left(H^{\prime}\right)$ is contained in $M_{m}(H)$; in particular, setting $M_{m}=M_{m}(\{1\})$, we have $M_{m} \subset M_{m}(H)$ for any H. There are exactly [$m / 2$] elements of length 1 in $M_{m}(H)$ and they are all contained in M_{m}.

Definition. Let $\xi=\left(x_{1}, \cdots, x_{m-1} ; y\right) \in M_{m}(H)$. Then
(i) ξ is decomposable if $\xi=\xi^{\prime}+\xi^{\prime \prime}$ for some $\xi^{\prime}, \xi^{\prime \prime} \in M_{m}(H)$; otherwise ξ is called indecomposable.
(ii) ξ is quasi-decomposable if there exists $\eta \in M_{m}(H)$ with $\|\eta\|$ ≤ 2 such that $\xi+\eta=\xi^{\prime}+\xi^{\prime \prime}$ for some $\xi^{\prime}, \xi^{\prime \prime} \in M_{m}(H)$ with $\left\|\xi^{\prime}\right\|,\left\|\xi^{\prime \prime}\right\|<\|\xi\|$.
(iii) ξ is semi-decomposable if there exist non-negative integer

