66. Studies on Holonomic Quantum Fields. IX

By Michio Jimbo
Research Institute of Mathematical Sciences, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 13, 1978)

In this note we shall give a symplectic version of the 2-dimensional operator theory, previously expounded in the orthogonal case [2], [5], [6]. Of particular interest is the neutral theory discussed in § 4. Corresponding to the bose field $\varphi^{F}(a)$ [1], there arises a strongly interacting fermi field $\varphi^{B}(\alpha)={ }^{t}\left(\varphi_{+}^{B}(\alpha), \varphi_{-}^{B}(\alpha)\right)$. These two fields $\varphi^{F}(a)$ and $\varphi^{B}(a)$ are shown to share the same S-matrix in common, and their τ-functions are related to each other through simple formulas (34), (36), (38)-(39) (cf. IV-(49) [2]).

We remark that the 1-dimensional Riemann-Hilbert problem [4], [8] is also dealt with in the symplectic framework.

We follow the notations used throughout this series [1]-[6].
The author wishes to express his heartiest thanks to Prof. M. Sato and Dr. T. Miwa for many discussions and valuable suggestions.

1. Let W be an N-dimensional complex vector space equipped with a skew-symmetric inner product \langle,$\rangle . Let A(W)$ be the algebra generated by W with the defining relation $w w^{\prime}-w^{\prime} w=\left\langle w, w^{\prime}\right\rangle$. Denote by $S(W)$ the symmetric tensor algebra over W. As in the orthogonal case [3], [7], the norm map

$$
\begin{equation*}
\mathrm{Nr}: A(W) \xrightarrow{\sim} S(W) \tag{1}
\end{equation*}
$$

and the expectation value $\langle a\rangle$ of $a \in A(W)$ are defined analogously, by specifying a bilinear form $\left(w, w^{\prime}\right) \rightarrow\left\langle w w^{\prime}\right\rangle$ on W such that $\left\langle w w^{\prime}\right\rangle$ $-\left\langle w^{\prime} w\right\rangle=\left\langle w, w^{\prime}\right\rangle\left(w, w^{\prime} \in W\right)$.

Now let v_{1}, \cdots, v_{N} be a basis of W, and set $K=\left(\left\langle v_{\mu} v_{\nu}\right\rangle\right), H=\left(\left\langle v_{\mu}\right.\right.$, $\left.\left.v_{\nu}\right\rangle\right)=K-{ }^{t} K$. Consider an element g of the form
(2) $\quad \operatorname{Nr}(g)=\langle g\rangle e^{\rho / 2}, \quad \rho=\sum_{\mu, \nu=1}^{N} R_{\mu \nu} v_{\mu} v_{\nu}=v R^{t} v$
with $v=\left(v_{1}, \cdots, v_{N}\right)$. Contrary to the orthogonal case, $e^{\rho / 2}$ no longer belongs to $S(W)$. So we let $R_{\mu \nu}=R_{\nu \mu} \in t \cdot C[[t]]$, and regard g (resp. $e^{\rho / 2}$) as an element of $A(W)[[t]]$ (resp. $S(W)[[t]])$, the formal power series ring with coefficients in $A(W)$ (resp. $S(W)$). The norm map (1) is uniquely extended there. (This formulation is due to T. Miwa.) Most of the formulas in the orthogonal case are valid for g of the form (2), if we replace ${ }^{t} K$ by $-{ }^{t} K$. We tabulate below formulas corresponding to (1.5.5)-(1.5.6), (1.5.7)-(1.5.8) and (1.4.6)-(1.4.7) of [7].

$$
\begin{equation*}
\mathrm{Nr}(w g)=\left(\sum_{\mu, \nu=1}^{N} v_{\mu}\left(1+R^{t} K\right)_{\mu \nu} c_{\nu}\right) \cdot\langle g\rangle e^{\rho / 2} \tag{3}
\end{equation*}
$$

