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1. The Wiener space, which is a typical example of abstract
Wiener spaces introduced by L. Gross [1], is a triple (B, H, ) where B
is a Banach space consisting of all real valued continuous functions
x(t) (x(0)=0) defined on the interval [0, 1] with norm ||z || =supo<;<; |2 ()],
H is a Hilbert space consisting of absolutely continuous functions x(t)
(2(0)=0) such that x/(¢) € L*[0, 1] with inner product

(¥ =j & @y (Bdt

and y is the Wiener measure, i.e., the Borel probability measure on B
such that

(1) L e' ™ y(dx) =exp {— —;—<h, h>H},

where h ¢ B*C H and (, ) is a natural paring of B* and B. Itisreadily
seen that {x(¢) ; 0t <1} is a standard Wiener process on the probability
space (B, p). A real-valued (or more generally, a Banach space-valued)
measurable function defined on the probability space (B, p) is called a
Wiener functional. Two Wiener functionals F,(x) and F,(x) are
identified if p{x; Fi(x)=F(x)}=0. Typical examples of Wiener func-
tionals are solutions of stochastic differential equations or multiple
Wiener integrals (see Ito [2]).

Malliavin [3] introduced a notion of derivatives of Wiener func-
tionals and applied it to the absolute continuity of the probability law
induced by a solution of stochastic differential equations at a fixed time.
Here, we define the derivatives of Wiener functionals in a somewhat
different way and rephrase a theorem of Malliavin. We will apply it
to the absolute continuity of the probability law induced by a system
of multiple Wiener integrals.

2. Let (B,H,p) be the Wiener space or more generally, any
abstract Wiener space. Let E be a Banach space, F' be a mapping
from B into E, and _L(B, E) denote the space of all bounded linear
operators from B into E. If there exists an operator T € _L(B, E) such
that
(2) Fa+y—F@=Tw+o(lylD)  as|y|—-0(yeB),
then F is said to be B-differentiable at x € B, and the operator T is
called the B-derivative (or Fréchet derivative) of F at z e B, F'(x) in



