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35. Classification Theory of Non-Complete
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In this paper we shall show that almost all theorems in classifica-
tion theory of algebraic surfaces by Enriques, Kodaira, Iitaka,
Mumford, Bombieri, ete. can be extended to the case of non-complete
algebraic surfaces. We use the following notation:

X: a non-singular algebraic surface (this is the object of the
study).

X: a non-singular complete algebraic surface which contains X
as a Zariski open subset.

D=X—-X: the complement of X in X. We assume that D has
only normal crossings.

#(X) (resp. &(X)): theKodaira (resp. logarithmic Kodaira) dimen-
sion of X (resp. X).

P, (X) (resp. P,(X)): the m-genus (resp. logarithmic m-genus) of
X (resp. X) (for the definitions, see [4]).

K: the canonical sheaf of X.

[ 1: the integral part.

For the sake of simplicity, we shall work only on the ground field
C, that is, in the case of characteristic zero.
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1. We first construct a relatively minimal model (or a super
model) of (X, X, D).

Theorem 1. If &#(X)>=0, then there exist a non-singulor complete
surface X, a divisor D,, with coefficients in Q on X,, and a birational
morphism f: X—X,, satisfying the following conditions:

(1) Dnp=3,d;D;, 0<d;<1, where the D, are irreducible divisors
on X,.

(2) f*K,+D,) is the arithmetically effective component of
K+ D in the sense of Zariski (see Definition 7.6 and Theorem 7.7 of
[10]), where K,, is the canonical sheaf of X,,.

(Xn,D,) is obtained by a succession of two kind of steps from
(X, D) as follows: we denote an intermediate stage by (X', D’), where
X’ is a non-singular complete algebraic surface and D’ is a divisor with



