33. G-Manifolds and G-Vector Fields with Isolated Zeros

By Katsuhiro Komiya

Department of Mathematics, Yamaguchi University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1978)

Let G be a finite group. A G-manifold is a smooth manifold M together with a smooth G-action on M, and a (continuous) G-vector field on a G-manifold M is a continuous G-equivariant cross section of the tangent bundle $\tau(M)$ of M. The object of this paper is to apply the equivariant homotopy theory of representation spheres [4] to remove isolated zeros of G-vector fields.

1. Preliminaries. Let M be a G-manifold. For any $x \in M$, G_x denotes the isotropy subgroup at x. For any subgroup H of G, define $M_H = \{x \in M \mid G_x = H\}$ and $M^H = \{x \in M \mid H \subset G_x\}$. Then M_H and M^H are submanifolds of M. Let $s: M \to \tau(M)$ be a G-vector field on M. s induces a vector field $s^H: M^H \to \tau(M^H)$ on M^H by restricting s on M^H .

Recall the index of a vector field s on M at an isolated zero $z \in M$ $-\partial M$. The index is denoted by ind (z; s), and defined to be the degree of the map

$$f = \frac{d\varphi \circ s \circ \varphi^{-1}}{\|d\varphi \circ s \circ \varphi^{-1}\|} \colon S^{n-1} \to S^{n-1},$$

where φ is a chart from a small neighborhood of z into \mathbb{R}^n taking z to 0, and $n = \dim M$. The map f describes the behavior of s near z. When M is a G-manifold and s is a G-vector field, we may take φ so as to be a G_z -equivariant chart from a G_z -invariant neighborhood of z into an orthogonal representation V of G_z taking z to 0. Moreover, the map f is a G_z -equivariant map from S(V) to itself, where S(V) is the unit sphere in V. For any subgroup H of G_z , z is also an isolated zero of s^H , and we see ind $(z; s^H) = \deg f^H$, where $f^H : S(V)^H \to S(V)^H$ is the restriction of f on $S(V)^H$.

Convention. For the only map $f: \phi \rightarrow \phi$ of an empty set, define deg f=1. So the index of a vector field on a 0-dim manifold at each point is 1. For a map $f:S^0 \rightarrow S^0$, define deg f=1 if f is the identity, deg f=0 if f maps S^0 to one point, and deg f=-1 if f interchanges the two points of S^0 .

2. Removing zeros. Theorem 1. Let G be a finite abelian group, and K a subgroup of G. Let s be a G-vector field on a G-manifold M. Let A be a connected component of M_K , and $\{z_1, z_2, \dots, z_p\}$ the zeros of s on A. Assume that all z_i 's are isolated zeros of s and are off ∂M , and assume that for any subgroup H of K,