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§1. Let > a, be any given infinite series with s, as its n-th par-
tial sum. If {p,} is a sequence of constants, real or complex, and
Po=py+p,+ -+ +Pn; Ppe=p_,=0,  for k=1,
then the Norlund mean ¢, of > a, is defined by
1.1 t, —-——Z y L2 ksk———Z P,_xay, (P,=x0).
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converges, then the series > a, is said to be absolutely summable
(N, p,), or summable |N, p,|.

In the special cases in which pn=A;‘1=<nzf_Il), «>0 and p,

=1/(n+1), summability |N, p,| are the same as the summability |C, «|
and the absolute harmonic summability, respectively.

Let {¢,(®)} be an orthonormal system defined in the interval (a, b).
We suppose that f(x) belongs to L*(a, b) and

F@)~ 33 anpa@).
By E&(f), we denote the best approximation to f(x) in the metric of
L? by means of polynomials Zakgok(x), ie., (EP(NY= Z laz?. We

write
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and

dAp =2y —Ap_;.

A denotes a positive absolute constant that is not always the same.

§2. The purpose of this paper is to give a general theorem on
the almost everywhere summability |N, p,] of orthogonal series and
deduce several known and new results from the theorem by the similar
method as that used by Ul’yanov [T7].

Our theorem reads as follows:

Theorem 1. Let {2(n)} be a positive sequence such that {2(n)/n}



