26. On the Bellman Transform of the Coefficients of Some Special Sine-series

By Takeshi KANO

Department of Mathematics, Okayama University, Okayama (Communicated by Kôsaku YOSIDA, M. J. A., June 14, 1977)

§1. Let $\{c_n\}$ be an infinite sequence of real numbers, and let $(Tc)_n$ denote the *n*-th arithmetic mean of $\{c_n\}$, i.e.

$$(Tc)_n = \frac{1}{n} \sum_{k=1}^n c_k$$

It was Hardy [5] who proved that if

(1)
$$\sum_{n=1}^{\infty} c_n \sin nx$$

is the Fourier series of some L^p -function $f(x) \in L^p$, $p \ge 1$, then

(2)
$$\sum_{n=1}^{\infty} (Tc)_n \sin nx$$

is the Fourier series of some L^p -function.

Bellman [2] introduced the transform

$$(T^*c)_n = \sum_{k=n}^{\infty} \frac{c_k}{k},$$

and proved that if (1) is the Fourier series of an $f(x) \in L^p$, p > 1, then (2) $\sum_{n=1}^{\infty} (T*a) \sin na$

(3)
$$\sum_{n=1}^{2} (1+c)_n \sin nx$$

is the Fourier series of the class L^p . We note that we cannot here put

$$p=1$$
 in general, as is easily seen from the example
$$\sum_{n=1}^{\infty} \frac{\sin nx}{\log^2 (n+1)}.$$

It seems still open to find the necessary and sufficient condition for (3) being the Fourier series of an L^1 -function when (1) is the Fourier series of an $f(x) \in L^1$. The object of this note is to provide such necessary and sufficient conditions in the special case when $\{c_n\}$ is of bounded variation,¹⁾ i.e.

$$(4) \qquad \qquad \sum_{n=1}^{\infty} |\varDelta c_n| < \infty,$$

where $\Delta c_n = c_n - c_{n+1}$.

We remark that for this special sequence $\{c_n\}$ G. and S. Goes [4] proved that a necessary and sufficient condition for (2) being the Fourier series of an L^1 -function is

(5)
$$\sum_{n=1}^{\infty} \frac{|c_n|}{n} < \infty.$$

¹⁾ An infinite sequence of bounded variation converges to a finite limit.