22. On the Acyclicity of Free Cobar Constructions. II

Ву Казиніко Аомото

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1977)

Examle 1. Let M be a connected simplicial complex and x_0 be a base point of M. Let N be a maximal tree in M containing x_0 . We denote by $C_*(M/N) = \bigoplus_{p=0}^{\infty} C_p(M/N)$ the CW-complex with the only one vertex x_0 . Let G be the edge path group of M/N with the base point x_0 . The set of all reduced closed pathes in M/N with the base point x_0 forms a free group F. Let L be the two-sided ideal of Z[F], generated by the elements of the form

(1.1)
$$\delta_1 T \langle v_0, v_1, v_2 \rangle = \widetilde{T \langle v_0, v_1 \rangle} \cdot \widetilde{T \langle v_1, v_2 \rangle} - \widetilde{T \langle v_0, v_2 \rangle}$$

for any reduced 2-simplex T of $M/N: \langle v_0, v_1, v_2 \rangle \rightarrow M/N$, where $T \langle v_i, v_j \rangle \in F$. We define X^f as $Z[F] \otimes C_*(M/N)$. For a reduced *n*-simplex T regarded as an element of X_n^f or A_{n-1} the formulae for ∂_n^f or δ_{n-1} are given as follows respectively:

(1.2)
$$\begin{array}{l} \partial_n^j T \langle v_0, v_1, \cdots, v_n \rangle = T \langle v_0, v_1 \rangle \cdot T \langle v_1, \cdots, v_n \rangle \\ + \sum_{i=1}^n (-1)^i \cdot T \langle v_0, v_1, \cdots, v_{i-1}, v_{i+1}, \cdots, v_n \rangle, \quad n \ge 2 \quad \text{and} \\ \partial_1^j T \langle v_0, v_1 \rangle = \widetilde{T \langle v_0, v_1 \rangle} - 1 \in \mathbb{Z}[F]^+, \quad n = 1, \end{array}$$

where $\widetilde{T \langle v_0, v_1 \rangle}$ lies in *F*, and

(1.3)

$$\begin{aligned} \delta_{n-1} T \langle v_0, v_1, \dots, v_n \rangle &= T \langle v_0, v_1 \rangle \cdot T \langle v_1, \dots, v_n \rangle \\ &+ \sum_{i=1}^{n-1} (-1)^i \cdot T \langle v_0, v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n \rangle \\ &+ (-1)^n \cdot T \langle v_0, v_1, \dots, v_{n-1} \rangle \cdot \widetilde{T} \langle v_{n-1}, v_n \rangle \\ &+ \sum_{i=2}^{n-2} (-1)^{i-1} \cdot T \langle v_0, v_1, \dots, v_i \rangle \cdot T \langle v_i, \dots, v_n \rangle, \quad n \geq 3. \end{aligned}$$

where $\widetilde{T\langle v_0, v_1 \rangle}$ and $\widetilde{T\langle v_{n-1}, v_n \rangle}$, $n \ge 3$, $\widetilde{T\langle v_0, v_1 \rangle}$, $\widetilde{T\langle v_1, v_2 \rangle}$ and $\widetilde{T\langle v_0, v_2 \rangle}$, n=2 are in F. The free cobar construction (A, δ) thus defined satisfies Assumptions 1 and 2 in [3]. This is nothing but a modification of Adams cobar construction. So by [3]

Theorem 1. $H_p(A) \cong (0), p \ge 1 \text{ and } H_0(A) \cong \mathbb{Z}[G] \text{ if and only if } M$ is a $K(\Pi, 1)$ space.

This is also related with Pfeiffer-Smith-Whitehead identity relations [4].

Example 2. Let \mathfrak{G} be a Lie algebra over Z and $\mathcal{E}(\mathfrak{G})$ or $T(\mathfrak{G})$ be its envelopping algebra or tensor algebra respectively. We consider the normalized standard complex (X, ∂) on $\mathcal{E}(\mathfrak{G}), X = \mathcal{E}(\mathfrak{G}) \otimes \Lambda^* \mathfrak{G}$, where $\Lambda^*(\mathfrak{G})$ denotes the exterior algebra of \mathfrak{G} . We put $X^j = T(\mathfrak{G}) \otimes \Lambda^* \mathfrak{G}$ and define for a $x_1 \wedge x_2 \wedge \cdots \wedge x_n \in X_n^j, x_j \in \mathfrak{G}, 1 \leq j \leq n$,