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1. Introduction. In the. preceding paper [1] we extended Rengel’s
results ([4] or [3]) to the case of circumferentially mean p-valent func-
tions. In this paper we shall treat the case of areally mean p-valent
functions defined as follows.

Let n(R, ) denote the number of roots of the equation f(z)--w
Re in a domain D. If for a certain positive, integer p,

(1.1) n(R, @)dq RdR<_pzR (O<_R < c),

then f(z) is called to be areally mean p-valent (c. [2]).
As defined in [1], D1, D2, D3, D4, D and D6 denote, the n-ply connect-

ed, representative domains of the ollowing types respectively.

Dx" n annulus, (0)rlzlr (c) with (n--2) circular arc
slits centered at the origin.

D" n annulus, (0) rlzlr (c) with (n--2) radial slits
emanating rom the origin.

the unit circle with (n--l) circular arc slits centered at theD3
origin.

D4:
origin.

D:
origin.

D6:
2.

the unit circle with (n--l) radial slits emanating rom the

the whole plane with n circular arc slits centered at the

the whole plane with n radial slits emanating rom the origin.

We shall first quote Hayman’s result (p. 33 in [2]).
Lemma. Let f(z)--Ret be single-valued, regular, areally mean

p-valent in a domain D and n(R, ) denote the quantity defined above.
Let Rl--in If(z)l and R----sup If(z)l. Then we have

zD zD

(2.1)
\p(R) - n(R, )

Hereafter we shall derive the results in this paper by the method
quite similar to [1].


