19. Tail Probabilities for Positive Random Variables Satisfying Some Moment Conditions

By Norio Kôno
Institute of Mathematics, Yoshida College, Kyoto University (Communicated by Kôsaku Yosida, m. J. A., May 12, 1977)

1. Let X be a positive random variable such that the asymptotic inequality

$$
(c(1-\varepsilon))^{2 n} \Gamma(2 n+1)^{\beta} \leq E\left[X^{2 n}\right] \leq(d(1+\varepsilon))^{2 n} \Gamma(2 n+1)^{\beta}
$$

(n : integer)
holds for all $\varepsilon, 0<\varepsilon<1$, where $0<c \leq d<+\infty$ and $0<\beta<1$. Then L. Davies [1] has proved the following inequalities as a corollary of his theorem :

$$
\begin{aligned}
\beta d^{-1 / \beta} & \leq \lim _{x \rightarrow+\infty}-\log P(X \geq x) / x^{1 / \beta} \\
& \leq \overline{l i m}_{x \rightarrow \infty}-\log P(X \geq x) / x^{1 / \beta} \\
& \leq \beta d^{-1 / \beta}\left(r_{u} / r_{l}\right)^{1 / \beta},
\end{aligned}
$$

where $0<r_{l} \leq 1 \leq r_{u}<+\infty$ are the two positive roots of $f(y)=0$,

$$
f(y)=\beta(c / d)^{1 / \beta} y^{1 / \beta} /(1-\beta)-y /(1-\beta)+1 .
$$

We will extend his result to a class of positive random variables satisfying some moment conditions which includes his result. For this aim, we shall define "nearly regularly varying function with index α " which is first introduced in [2].
2. Let $\sigma(x)$ be a positive measurable function defined on $\left[c_{0}+\infty\right)$, $\left(c_{0}>0\right)$. We say that $\sigma(x)$ is a "nearly regularly varying function with index α " if and only if there exist two positive constants $r_{1} \geq r_{2}$ and a slowly varying function $s(x)$ such that

$$
r_{2} x^{\alpha} s(x) \leq \alpha(x) \leq r_{1} x^{\alpha} s(x)
$$

In particular, we say that $\sigma(x)$ is a "nearly slowly varying function" if $\alpha=0$.

As is well known (for example see [3]) $s(x)$ is represented as follows:

$$
s(x)=b(x) \exp \int_{.}^{x} a(t) / t d t
$$

where $a(x)$ and $b(x)$ are measurable functions such that

$$
\lim _{x \rightarrow \infty} b(x)=b>0 \quad \text { and } \quad \lim _{x \rightarrow \infty} a(x)=0 .
$$

3. Theorem 1. Let X be a positive random variable. Assume that there exist two positive constants c_{1} and h, and also a non-decreasing nearly regularly varying function $\sigma(x)$ with index $\alpha . \quad 0<\alpha<1$, defined on $[1 / h,+\infty)$ such that
