17. Cohomology of the Symmetric Space EI

By Kiminao Ishitoya

Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1977)

§ 0. Introduction. Among the compact 1-connected irreducible symmetric spaces of exceptional type, G, FI, EI, EII, EV, EVI, EVIII and EIX have 2-torsion. The cohomology of G, FI and EII are known [2], [4], [5]. In this paper we determine the cohomology of $EI = E_6/PSp(4)$.

Since *EI* is 1-connected and $\pi_2(EI) = Z_2$, we have two fiberings

- (a) $\widetilde{EI} \xrightarrow{g} EI \xrightarrow{f} K(Z_2; 2),$
- (b) $E_6 \longrightarrow \widetilde{EI} \longrightarrow BSp(4).$

On the other hand $EIV = E_6/F_4$, and the subgroups F_4 and PSp(4) of E_6 contain the subgroup $U = S^3 \cdot Sp(3)$ in common. Noticing that $F_4/U = FI$ and $PSp(4)/U = HP^3$, we have two more:

- (c) $HP^{3} \xrightarrow{i} E_{6}/U \xrightarrow{p} EI$,
- (d) $FI \longrightarrow E_6/U \longrightarrow EIV.$

We calculate the Serre spectral sequence associated to these fiberings.

Throughout the paper we use the following notations (A being a ring):

 $A{x_i} = \bigoplus A \cdot x_i$ and $\Delta(x_i) = A{m; m \text{ is a simple monomial in } x_i}$. Then our results are

Theorem 1. $H^*(EI; Z_2) = Z_2[x_i; i=2, 3, 5, 9, 11, 13, 15, 17, 21, 23]/I$, where $Sq^i x_{i+1} = x_{2i+1}$ (i=1, 2, 4, 8), $Sq^j x_{j+7} = x_{2j+7}$ (j=4, 8), $Sq^8 x_{13} = x_{21}$ and I is the ideal generated by the following elements $(x'_5 = x_5 + x_2x_3):$ $x_2^3 + x_3^2, x_2^2 x_i$ (i $\neq 2, 13, 21$), x_j^2 (j $\neq 2, 3$), $x_5' x_9 x_{17}; x_3 x_{13} + x_5' x_{11}, x_5' x_{13},$ $x_9 x_{13} + x_5' x_{17}, x_{17} x_{13}, x_3 x_{21} + x_9 x_{15}, x_5' x_{21} + x_9 x_{17}, x_9 x_{21}, x_{17} x_{21}; x_{17} x_{11} + x_5' x_{23},$ $x_5' x_{15} + x_3 x_{17} + x_9 x_{11}, x_{17} x_{15} + x_9 x_{23}, x_{17} x_{23} + x_3 x_5' x_9 x_{23}; x_{11} x_{13}, x_{11} x_{15} + x_3 x_{23},$ $x_{11} x_{21} + x_9 x_{23}, x_{13} x_{15} + x_5' x_{21}, x_k x_{23}$ (k=11, 13, 15, 21).

Theorem 2. (i) As a ring $H^*(EI)/\text{Tors. } H^*(EI)$ is generated by $\{e_i, e'_i; i=8, 9, 17; j=16, 17, 25, 34\}$ and

$$H^*\left(EI; Z\left[\frac{1}{2}\right]\right) = Z\left[\frac{1}{2}\right][e_8]/(e_8^3) \otimes \Lambda(e_9, e_{17}),$$

in which $e_{16}' = \frac{1}{4}e_8^2$, $e_{17}' = \frac{1}{2}e_8e_9$, $e_{25}' = \frac{1}{2}e_8e_{17}$ and $e_{34}' = \frac{1}{4}e_8e_9e_{17}$.

(ii) There exist torsion elements $\chi \in H^3(EI)$ of order 2 and $\omega_i \in H^i(EI)$ (i=5, 11, 15, 23) of order 4, and