16. On the Periods of Enriques Surfaces. II

By Eiji Horikawa
University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1977)

This is a continuation of [4], and here we report on our result on the image of the period map for Enriques surfaces.

Let S be an Enriques surface defined over the field of complex numbers. Then there corresponds to S a point $\lambda(S)$, called the period of S, which is in the period space D / Γ. First we recall the construction of D and Γ. Let T be the universal covering of S. Then T is a $K 3$ surface, and hence the homology group $H_{2}(T, Z)$, given with the intersection product, is isomorphic to a unique even unimodular euclidean lattice Λ of signature (3, 19). Moreover, if we associate the involution τ induced by the covering transformation, the pair $\left(H_{2}(T, Z), \tau\right)$ is isomorphic to a standard pair (Λ, ρ) (see [4], § 3). Let $\Lambda(-1)$ denote the (-1)-eigenspace of ρ. Then D consists of non-zero linear maps $\omega: \Lambda(-1) \rightarrow C$, modulo multiplications by constants, which satisfy the Riemann bilinear relations

$$
\omega \cdot \omega=0, \quad \omega \cdot \bar{\omega}>0,
$$

the product being induced by that on $\Lambda(-1)$. On the other hand, Γ is the group of those automorphisms of $\Lambda(-1)$ which are the restrictions of the automorphisms of Λ commuting with ρ.

An element e of $\Lambda(-1)$ is called a root if it satisfies $e^{2}=-2$. From the explicit description of $\Lambda(-1)$ in [4], we infer that such elements exist. If e is a root, we define a hypersurface H_{e} of D by the condition $\omega(e)=0$. We shall use H_{e} / Γ to denote $H_{e} \Gamma / \Gamma$.

Main Theorem. There exists only a finite number of Γ-equivalence classes of the roots e in $\Lambda(-1)$, and if λ is a point of D / Γ outside of the union of the hypersurfaces H_{e} / Γ, then λ is the period of an Enriques surface S, which is uniquely determined by λ. Moreover, any point of H_{e} / Γ is not the period of an Enriques surface.

The basic idea of the proof is that of [3].
First, by the construction in [4], each Enriques surface S is birationally equivalent to a double covering of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. We take a system of 2-way homogeneous coordinates ($Y_{1}, Y_{2} ; Z_{1}, Z_{2}$) and fix the projection onto the second factor. Then the branch locus of the covering consists of the two fibres Γ_{i} defined by $Z_{i}=0, i=1,2$, and a curve B_{E}^{0} of bidegree (4, 4), which has two 2-fold double points at P_{i} on Γ_{i}, having the contact of order 4 with Γ_{i} at $P_{i}, i=1,2$. An Enriques surface S, with an elliptic

