16. On the Periods of Enriques Surfaces. II

By Eiji Horikawa

University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1977)

This is a continuation of [4], and here we report on our result on the image of the period map for Enriques surfaces.

Let S be an Enriques surface defined over the field of complex numbers. Then there corresponds to S a point $\lambda(S)$, called the period of S, which is in the period space D/Γ . First we recall the construction of D and Γ . Let T be the universal covering of S. Then T is a K3 surface, and hence the homology group $H_2(T, Z)$, given with the intersection product, is isomorphic to a unique even unimodular euclidean lattice Λ of signature (3, 19). Moreover, if we associate the involution τ induced by the covering transformation, the pair $(H_2(T, Z), \tau)$ is isomorphic to a standard pair (Λ, ρ) (see [4], § 3). Let $\Lambda(-1)$ denote the (-1)-eigenspace of ρ . Then D consists of non-zero linear maps $\omega: \Lambda(-1) \rightarrow C$, modulo multiplications by constants, which satisfy the Riemann bilinear relations

$$\omega \cdot \omega = 0, \qquad \omega \cdot \overline{\omega} > 0,$$

the product being induced by that on $\Lambda(-1)$. On the other hand, Γ is the group of those automorphisms of $\Lambda(-1)$ which are the restrictions of the automorphisms of Λ commuting with ρ .

An element e of $\Lambda(-1)$ is called a *root* if it satisfies $e^2 = -2$. From the explicit description of $\Lambda(-1)$ in [4], we infer that such elements exist. If e is a root, we define a hypersurface H_e of D by the condition $\omega(e)=0$. We shall use H_e/Γ to denote $H_e\Gamma/\Gamma$.

Main Theorem. There exists only a finite number of Γ -equivalence classes of the roots e in $\Lambda(-1)$, and if λ is a point of D/Γ outside of the union of the hypersurfaces H_e/Γ , then λ is the period of an Enriques surface S, which is uniquely determined by λ . Moreover, any point of H_e/Γ is not the period of an Enriques surface.

The basic idea of the proof is that of [3].

First, by the construction in [4], each Enriques surface S is birationally equivalent to a double covering of $P^1 \times P^1$. We take a system of 2-way homogeneous coordinates $(Y_1, Y_2; Z_1, Z_2)$ and fix the projection onto the second factor. Then the branch locus of the covering consists of the two fibres Γ_i defined by $Z_i=0$, i=1, 2, and a curve B_E^0 of bidegree (4, 4), which has two 2-fold double points at P_i on Γ_i , having the contact of order 4 with Γ_i at P_i , i=1, 2. An Enriques surface S, with an elliptic