14. On Commutative Rings which have Completely Reducible Torsion Theories

By Kiyoichi Oshiro
Department of Mathematics, Yamaguchi University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1977)

Throughout this note we assume that R is a commutative ring with identity and all R-modules are unital. Let (T, F) be a torsion theory for R-mod. We call that $T(F)$ is completely reducible if every R-module belonging to $T(F)$ is completely reducible, and call (T, F) completely reducible when both T and F are completely reducible.

The purpose of this paper is to study completely reducible torsion theories. It is shown in Theorem 2.5 that if R has a completely reducible torsion theory, then it is a (von Neumann) regular ring whose spectrum of prime ideals has only a finite number of non-isolated points and in this case all completely reducible torsion theories are determined by a finite subset of the spectrum containing all non-isolated points.

A torsion theory is a pair (T, F) of subclasses of R-mod satisfying
(1) $T \cap F=\{0\}$,
(2) T is closed under homomorphic images,
(3) F is closed under submodules, and
(4) for each A in R-mod, there is a submodule $T(A)$ of A called the torsion submodule of A such that $T(A) \in T$ and $A / T(A) \in F$.
T is then called the torsion class and F is called the torsion-free class.

A torsion theory (T, F) is called hereditary when T is closed under submodules.

Let (T, F) be a torsion theory. $\quad T(F)$ is said to be a $T T F$-class if there is a subclass $U \subseteq R$-mod for which $(U, T)((F, U))$ forms a torsion theory. $\quad F$ is a $T T F$-class iff F is closed under homomorphic images.

1. We denote the Boolean ring consisting of all idempotents in R by $B(R)$ and the spectrum of prime ideals of $B(R)$ by $X(R) . \quad X(R)$ forms a Boolean space with the family $\{U(e) \mid e \in B(R)\}$ as an open basis, where $U(e)=\{x \in X(R) \mid e \in x\}$. For an R-module A and x in $X(R)$, we set $A x$ $=\{a e \mid a \in A, e \in x\}$. Remark that all factor rings $R / R x$ for x in $X(R)$ are indecomposable as a ring, and that x in $X(R)$ is an isolated point iff $x=B(R)(1-e)$ for some minimal idempotent e in R.

We need the following lemmas for the later use, but we omit the proofs.

