13. Bifurcation of Stable Stationary Solutions from Symmetric Modes

By Yasumasa NISHIURA

Faculty of Science, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1977)

Introduction. We consider the following semilinear parabolic system of equations:

$$U_t = D(\sigma)U_{xx} + BU + F(U), \qquad (t, x) \in (0, +\infty) \times (0, L)$$

$$U(t, 0) = U(t, L) = 0,$$
(P-1)

where $U = {}^{t}(u(t, x), v(t, x)), D(\sigma) = (D_{u}(\sigma), D_{v}(\sigma))$ and σ is a real parameter, $B = \begin{pmatrix} a, b \\ c, d \end{pmatrix}$ is a real constant matrix and $F(U) = {}^{t}(f_{1}(u, v), f_{2}(u, v))$ is a smooth autonomous nonlinear operator which satisfies

$$F(0) = F_{U}(0) = 0. \tag{0-1}$$

We assume that B satisfies either of the following conditions:

$$\det B \ge 0, \ a \ge 0, \qquad d = 0, \tag{0-2}$$

$$\det B > 0, \ a > 0, \qquad a + d \leq 0. \tag{0-3}$$

Our main purpose is to show the existence of bifurcation of stable stationary solutions of (P-1) as $D(\sigma)$ varies. Stationary problem of (P-1) and its linearized system of equations at U=0 are given as follows:

$$D(\sigma)U_{xx} + BU + F'(U) = 0,$$

$$U(0) = U(L) = 0,$$
(P-2)

$$D(\sigma)U_{xx} + BU = 0, (P-3)$$

$$U(0) = U(L) = 0.$$

Section 1 deals with the spectrum of (P-3) and the existence of bifurcation of stationary solutions from any mode of the eigenfunction of (P-3) under the appropriate conditions of $D(\sigma)$ and B. Section 2 deals with the asymptotic stability of the bifurcating solutions from symmetric modes. In section 3 we give some examples of biological system to which our theorems can apply.

§ 1. Existence. Using the Fourier series expansion of U,

$$U = \sum_{n=1}^{\infty} U_n \sin \frac{n\pi}{L} x = \sum_{n=1}^{\infty} {\binom{u_n}{v_n}} \sin \frac{n\pi}{L} x,$$

we obtain the infinite system of linear equations of $\{U_n\}_{n \in N}$:

The roots $\{\alpha_n^i\}_{i=1,2}$ (Re $\alpha_n^1 \ge$ Re α_n^2) of the characteristic equation