8. On the Deuring-Heilbronn Phenomenon. II

By Yoichi MOTOHASHI Department of Mathematics, College of Science and Technology, Nihon University, Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1977)

1. Quite recently two simple proofs of the Deuring-Heilbronn phenomenon [4] have been obtained independently by the present author [6] and Jutila [2]. Jutila's proof can be much simplified by appealing to the weight $\Psi_r(n)$ of [6]. But, compared with [2], the real advantage of [6] is in its Lemma 4. To exhibit this, we prove here very briefly a hybrid of two fundamental theorems of Linnik [3] [4] coupled with further simplifications which are embodied in Lemmas 2 and 3 below and which show that whole things are now reduced to a simple application of the Selberg sieve. Similar simplifications are, of course, applicable to the former proofs of Linnik's zero-density theorem [3]. Our new result is as follows:

Theorem. Let $1-\delta$ be the exceptional zero of $L(s, \chi_1), \chi_1$ real $(\mod q)$. And let $\tilde{N}(\alpha, T, \chi)$ denote the number of zeros of $L(s, \chi)L(s + \delta, \chi\chi_1)$ in the region Re $(s) \geq \alpha$, $|\operatorname{Im}(s)| \leq T$. Then we have, for $\alpha > 3/4$, $\sum_{\chi \pmod{q_1}} \tilde{N}(\alpha, T, \chi) \ll_{\delta} \delta(\log qT)(q^{\tau}T^4)^{(1+\epsilon)((1-\alpha)/(3\alpha-2))}$.

This may not be the best exponent attainable by our method. A similar but much weaker result can be found in [1; Théorème 14], which was obtained by the power-sum method of Turán. The large sieve extension can be proved quite similarly.

2. In what follows, B(n), g(r), G(R) are all defined in [6].

Lemma 1. Let

$$(f^{(1)} \circ f^{(2)})_d = \sum_{[u,v]=d} f^{(1)}_u f^{(2)}_v.$$

Then we have

$$\sum_{d|n} (f^{(1)} \circ f^{(2)})_d = \left(\sum_{u|n} f^{(1)}_u\right) \left(\sum_{v|n} f^{(2)}_v\right).$$

Lemma 2. Let $\eta_d = O(|\mu(d)| d^*)$ and let
 $F(s, \chi; \eta) = \sum_{d=1}^{\infty} \chi(d) d^{-s} \eta_d \prod_{p|d} \left(1 + \frac{\chi_1(p)}{p^\delta} - \frac{\chi\chi_1(p)}{p^{1+\delta}}\right).$

Then we have, for $\operatorname{Re}(s) > 1$,

$$\sum_{n=1}^{\infty} \chi(n) B(n) \Big(\sum_{d \mid n} \eta_d \Big) n^{-s} = L(s, \chi) L(s + \delta, \chi\chi_1) F(s, \chi; \eta).$$

Lemma 3. Let

$$G_d(R) = \sum_{\substack{r \leq R \\ (r,d)=1}} \mu^2(r)g(r),$$