36. A Complex Analogue of the Generalized Minkowski Problem

By Mikio Ise*)
(Communicated by Kunihiko Kodarra, m. J. A., Sept. 12, 1977)

1. Recently, A. V. Pogorelov [5, 6] announced to have solved the generalized Minkowski problem using the idea of E. Calabi, as was also mentioned in our lecture [3]. It was a key point of solving this problem to reduce it to finding solutions of certain non-linear elliptic partial differential equations defined over the unit sphers $S^{n}(n \geq 2)$, which we called in [3] as of the generalized Monge-Ampère type. In the present note we will show that the framework of finding solutions of the differential equation mentioned above can be applied analogously also in the case of n-complex projective space $P_{c}^{n}(n \geq 1)$, instead of the unit sphere. To describe our motivation of studies, we have first to resume and explain the differential equations over S^{n} appearing in the generalized Minkowski problem which suits to our purpose.

Namely, we denote by ϕ the unknown C^{∞}-function of n-variables $u_{1}, u_{2}, \cdots, u_{n}$, that is in reality defined over the whole S^{n}; in fact, if we write the current co-ordinates of the ambient euclidean space R^{n+1} as $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right)$ and cover S^{n} by the co-ordinates patches $U_{i}=\left\{\xi_{i} \neq 0\right\}$ $(0 \leq i \leq n)$. In every U_{i}, we put $u_{1}=\xi_{0} / \xi_{i}, u_{2}=\xi_{1} / \xi_{i}, \cdots, u_{n}=\xi_{n} / \xi_{i}$, whereby one considers the differential operator D_{i} :

$$
\begin{equation*}
D_{i}(\phi)=\left|\xi_{i}\right|^{-n-2} \operatorname{det}\left(\frac{\partial^{2} \phi}{\partial u_{j} \partial u_{k}}\right) \quad(0 \leq i \leq n), \tag{1}
\end{equation*}
$$

then $D_{i}(0 \leq i \leq n)$ yield the differential operator D defined globally over the sphere S^{n}. The generalized Minkowski problem for an n-dimensional compact, convex oriented hypersurface $V(n \geq 2)$ is concerned with the following partial differential equation on S^{n} :

$$
\begin{equation*}
D(\phi)=\kappa, \tag{2}
\end{equation*}
$$

where a given positive function κ on S^{n} is assumed to satisfy the conditions:

$$
\int_{S^{n}} \kappa \cdot \xi_{i} d S=0 \quad(0 \leq i \leq n),
$$

$d S$ denoting the volume element of S^{n} with respect to the natural metric of S^{n} (The equation (2) has been known from old times, when $n=2$, as the simplest form of the so-called Monge-Ampère equations [3]). In the

[^0]
[^0]: *) Prof. M. Ise died on March 16, 1977, at the age of 44, by a railway accident.

