35. Congruences of the Eigenvalues of Hecke Operators

By Kazuyuki HATADA

Department of Mathematics, Faculty of Science, University of Tokyo (Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1977)

Introduction. This note is a continuation of our previous note on the divisibility by 2 of the eigenvalues of Hecke operators [1]. We will omit the proofs of the theorems in this note. Details will appear in K. Hatada "On the eigenvalues of Hecke operators" [3].

§ 1. Let S_{w+2} be the space of cusp forms of weight w+2 on $SL(2, \mathbb{Z})$. Let λ_p be any eigenvalue of the Hecke operator T(p) on S_{w+2} where p is a rational prime. In K. Hatada [1] we proved the following Theorem 1 and announced Theorem 2:

Theorem 1. λ_p is divisible by 2 for any rational prime p and for any even weight w+2.

Theorem 2. (i) λ_p is divisible by 4 for any prime p with $p \equiv -1 \mod 4$ and for any even weight w+2.

(ii) (λ_p-2) is divisible by 4 for any prime p with $p \equiv +1 \mod 4$ and for any even weight w+2.

Prof. J.-P. Serre sent us some experimental results, computed on a machine, which are proved by Theorems 2, 4 and 5 in this note.

Later he sent his conjectures compatible with the known results (see Remark 1 below), which are proved by Theorems 3 and 6. The author wishes to express his gratitude to Prof. Serre for his suggestions.

In §1 of this note we give congruences for eigenvalues of the Hecke operators on S_{w+2} . They are Theorems 3-9.

Let λ_p be any eigenvalue of the T(p) on S_{w+2} .

Theorem 3. $\lambda_p \equiv 1 + p \mod 8$, for any odd prime p and for any even weight w+2.

Theorem 4. λ_2 is divisible by 8 for any even weight w+2.

Theorem 5. (i) λ_2 is divisible by 16 for any weight w+2 such that $w \equiv 0 \mod 4$.

(ii) λ_2 is divisible by 32 for any weight w+2 such that $w \equiv 0 \mod 4$ and $w \not\equiv 0 \mod 8$.

Theorem 6. $\lambda_p \equiv 1 + p \mod 3$ for any rational prime p except for p=3 and any even weight w+2.

Theorem 7. λ_3 is divisible by 3 for any even weight w+2.

Theorem 8. $\lambda_{11} \equiv 2 \mod 5$ for any even weight w+2.

Theorem 9. $\lambda_{19} \equiv 0 \mod 5$ for any even weight w+2.

Remark 1. Let $\operatorname{tr} T(p)_{w+2}$ be the trace of the T(p) on S_{w+2} . A few