34. A Note on the Large Sieve. II

By Yoichi Motohashi

Department of Mathematics, College of Science and Technology, Nihon University, Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1977)

1. Let \mathcal{N} be a set of integers in an interval of length N. Also let \mathcal{P} be a set of prime numbers p to each of which Ω_p a set of residues (mod p) is associated. It is assumed that $|\Omega_p|$ the number of elements of Ω_p satisfies $0 < |\Omega_p| < p$. Then the large sieve under the present consideration is the problem of estimating

$$S=|\{n\in\mathcal{N}: n(\text{mod }p)\notin\Omega_p \text{ for all }p\in\mathcal{P}\}|.$$

According to the famous theorem of Montgomery [2] (with the latter refinement [3]) we have

$$(1) S \leq (N+Q^2) \left\{ \sum_{q \in Q} \prod_{p \mid q} \frac{|\Omega_p|}{|p-|\Omega_p|} \right\}^{-1}$$

where

$$\mathcal{Q} \!=\! \Big\{ q \! \leq \! Q \, ; \, q \, \Big| \prod_{p \in \mathcal{P}} p \Big\}.$$

Kobayashi [1] made an important observation that the optimal value of the Selberg λ_d (see (2) below) can be put into an expression which combines well with the dual form of the (additive) large sieve inequality, and thus he got a proof of (1) via Selberg's procedure.

The purpose of the present note is to show that there is a simpler modification of Selberg's argument than Kobayashi's which leads us to (1) quite straightforwardly. In particular we do not need the explicit value of λ_d . But as [1] we have to appeal to the following result due to Montgomery and Vaughan [3; formula (2.3)]:

Lemma. Let $\{x_j\}$ be a set of real numbers which are δ well-spaced (mod 1). Then, for any complex numbers b_j and real M and N(>0), we have

$$\sum_{M < n \leq M+N} \left| \sum_j b_j e^{2\pi i x_j n} \right|^2 \leq (N+\delta^{-1}) \sum_j |b_j|^2.$$

2. In order to simplify the notations we introduce the following conventions that $\Omega_d = \Omega_{p_1} \times \Omega_{p_2} \times \cdots \times \Omega_{p_t}$ if $Q \ni d = p_1 p_2 \cdots p_t$ and that $n \in \Omega_d$ means $n \pmod{d} \in \Omega_d$, so $n \in \Omega_1$ for any n.

Then by the fundamental idea of Selberg we have

$$S \leq \sum_{M < n \leq M+N} \left| \sum_{n \in \Omega_d} \lambda_d \right|^2,$$

where $\mathcal{N}\subseteq (M,M+N]$ and λ_d are complex numbers defined on Q whose values are arbitrary, except for