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1. Ch. Pommerenke [4] proved the following theorem. Let f(z)
=z+az-X+azn-+... +a_xz+a be a polynomial of degree n with
some a O. Assume that the region E {z e C" If(z)l <= 1} is con-
nected, where C stands for the field of complex numbers. Then

max f’(z) en
zE 2

P. ErdSs [5] reviewing Pommerenke’s paper conjectured that

max [if(z)]< n

is also true and it is best possible. ErdSs reposed his conjecture as a
problem in [2]. As it appears in [3] ErdSs’ conjecture was unsolved
until the year 1972 and to the best o our knowledge it is open until now.
The purpose o this paper is to give a counterexample to ErdSs’ con-
jecture. It seems to us that this gives some information concerning
the amous coefficient conjecture o L. Bieberbach [1], [6], [7].

2. Counterexample to rdSs’ conjecture. Let T(z) be the
Chebyshev polynomial o degree n, defined by T(z)=2 cos nS, where
z=2 cos O, and n=0, 1, 2, 3, .. This is a complex polynomial of a
real variable and has n real zeros in the line segment [--2, 2] and --2
T(z)2 or --2Kz2. The recursion ormula, T+(z)=zT(z)
--T_(z), which is valid since cos (n+ 1)0+cos (n--1)=2 cos n0 cos 8,
allows us to write the ollowing sequence o polynomials" T0(z)=2,
T(z)=z, T(z)=z--2, T(z)=z--3z, T,(z)=z’--4z+2 and in general

T(z)=z+ (_1) n n--m--1 z_
= --1

is a complex inhomogeneous polynomial in a real variable and of
degree n. Consider now f(z) =T(z/). This is a monic inhomogene-
ous polynomial of degree n and in fact 2 f(z) 2 for -2 z

22. Take 2 1/2/. Then --1 f(z) 1 for --2/2x/z2/2TM.
Because of the fact that T(z)=T(2 cos0)=2 cos n, it implies that
T(2 cos 0)=n(sin n0/sin ). Thus, max ([T(z)[" --2/2TMz2/2/}=n
because max ((sin nO/sin )" -2/2x/ z 2/2TM} n. However, f(z)
=T(z/2). Therefore f’(z)=n-xT(z/) and so max{f’(z)[’--2z
22)=2-n. If we set 2=1/2/, then max {]f’(z)] --2/2/nz2/2TM}


