33. A Counterexample to a Conjecture By P. Erdös

By G. M. Rassias, J. M. Rassias, and T. M. Rassias
Department of Mathematics, University of California at Berkeley, Berkeley, California 94720, U.S.A.

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1977)

1. Ch. Pommerenke [4] proved the following theorem. Let $f(z)$ $=z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\cdots+a_{n-1} z+a_{n}$ be a polynomial of degree n with some $a_{j} \neq 0$. Assume that the region $E_{f}=\{z \in C:|f(z)| \leqq 1\}$ is connected, where \boldsymbol{C} stands for the field of complex numbers. Then

$$
\max _{z \in E_{f}}\left|f^{\prime}(z)\right|<\frac{e n^{2}}{2}
$$

P. Erdös [5] reviewing Pommerenke's paper conjectured that

$$
\max _{z \in E_{f}}\left|f^{\prime}(z)\right|<\frac{n^{2}}{2}
$$

is also true and it is best possible. Erdös reposed his conjecture as a problem in [2]. As it appears in [3] Erdös' conjecture was unsolved until the year 1972 and to the best of our knowledge it is open until now. The purpose of this paper is to give a counterexample to Erdös' conjecture. It seems to us that this gives some information concerning the famous coefficient conjecture of L. Bieberbach [1], [6], [7].
2. Counterexample to Erdös' conjecture. Let $T_{n}(z)$ be the Chebyshev polynomial of degree n, defined by $T_{n}(z)=2 \cos n \theta$, where $z=2 \cos \theta$, and $n=0,1,2,3, \cdots$. This is a complex polynomial of a real variable and has n real zeros in the line segment $[-2,2]$ and -2 $\leq T_{n}(z) \leq 2$ for $-2 \leq z \leq 2$. The recursion formula, $T_{n+1}(z)=z T_{n}(z)$ $-T_{n-1}(z)$, which is valid since $\cos (n+1) \theta+\cos (n-1) \theta=2 \cos n \theta \cos \theta$, allows us to write the following sequence of polynomials: $T_{0}(z)=2$, $T_{1}(z)=z, T_{2}(z)=z^{2}-2, T_{3}(z)=z^{3}-3 z, T_{4}(z)=z^{4}-4 z^{2}+2$ and in general

$$
T_{n}(z)=z^{n}+\sum_{m=1}^{[n / 2]}(-1)^{m} \frac{n}{m}\binom{n-m-1}{m-1} z^{n-2 m}
$$

is a complex inhomogeneous polynomial in a real variable and of degree n. Consider now $f(z)=\lambda^{n} T_{n}(z / \lambda)$. This is a monic inhomogeneous polynomial of degree n and in fact $-2 \lambda^{n} \leq f(z) \leq 2 \lambda^{n}$ for $-2 \lambda \leq z$ $\leq 2 \lambda$. Take $\lambda=1 / 2^{1 / n}$. Then $-1 \leq f(z) \leq 1$ for $-2 / 2^{1 / n} \leq z \leq 2 / 2^{1 / n}$. Because of the fact that $T_{n}(z)=T_{n}(2 \cos \theta)=2 \cos n \theta$, it implies that $T_{n}^{\prime}(2 \cos \theta)=n(\sin n \theta / \sin \theta)$. Thus, $\max \left\{\left|T_{n}^{\prime}(z)\right|:-2 / 2^{1 / n} \leq z \leq 2 / 2^{1 / n}\right\}=n^{2}$ because $\max \left\{(\sin n \theta / \sin \theta):-2 / 2^{1 / 2} \leq z \leq 2 / 2^{1 / n}\right\}=n$. However, $f(z)$ $=\lambda^{n} T_{n}(z / \lambda)$. Therefore $f^{\prime}(z)=\lambda^{n-1} T_{n}^{\prime}(z / \lambda)$ and so $\max \left\{\left|f^{\prime}(z)\right|:-2 \lambda \leq z\right.$ $\leq 2 \lambda\}=\lambda^{n-1} n^{2}$. If we set $\lambda=1 / 2^{1 / n}$, then max $\left\{\left|f^{\prime}(z)\right|:-2 / 2^{1 / n} \leq z \leq 2 / 2^{1 / n}\right\}$

