32. A Note on the Law of Decomposition of Primes in Certain Galois Extension

By Hideji Ito

Department of Mathematics, Akita University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1977)

Let *E* be an elliptic curve defined over *Q*, and ℓ a rational prime. Put $E_{\ell} = \{a \in E \mid \ell a = 0\}$ and $K_{\ell} = Q(E_{\ell})$ i.e. the number field generated over *Q* by all the coordinates of the points of order ℓ on *E*. Then K_{ℓ}/Q is a galois extension and Gal $(K_{\ell}/Q) \subset GL_2(Z/\ell Z)$. When *E* has no complex multiplication, Gal $(K_{\ell}/Q) \cong GL_2(Z/\ell Z)$ except for finitely many ℓ 's ([6]). And we know that $GL_2(Z/\ell Z)$ is non-solvable for $\ell > 3$.

The aim of this note is to investigate the law of decomposition of primes in K_{ℓ}/Q . Let p be a rational prime $(\neq \ell)$ where E has good reduction. Then p is unramified in K_{ℓ}/Q . We deal exclusively in that case. (Note that the method in [7] enables one to determine the degrees of most primes but not all, especially the complete splitting case cannot be determined.)

Let $\pi = \pi_p$ be the *p*-th power endomorphism of $E \mod p$. Put $N_{p^m} = \#(E \mod p)(F_{p^m})$ and $a_{p^m} = \operatorname{tr}(\pi^m)$, where trace is taken with respect to ℓ -adic representation of $E \mod p$. Then $N_{p^m} = 1 - a_{p^m} + p^m$. (Note that we can calculate a_{p^m} by the value a_p). As $\operatorname{End}_{F_p}(E \mod p)$ is isomorphic to an order \circ of an imaginary quadratic field k, hereafter we identify them (so $\pi \in \circ, k = Q(\pi)$).

Theorem 1. Let $\ell > 2$ and f be the degree of p in K_{ℓ}/Q , and mthe smallest rational integer >0 which satisfies $\ell^2 | N_{p^m}$ and $\ell | (p^m - 1)$. Then the following assertions hold. (1) If $\ell^2 \not\mid ((a_p)^2 - 4p)$, then f = m. (2) If $\ell^2 | ((a_p)^2 - 4p)$, then f = m or ℓm , according as $\ell | (0: \mathbb{Z}[\pi])$ or not, where $0 = \operatorname{End}_{F_n}(E \mod p)$.

Corollary 1. p decomposes completely in $K_{\ell}/\mathbf{Q} \Leftrightarrow \ell^2 | N_p, \ell | (p-1), \ell | (0: \mathbf{Z}[\pi]).$

Corollary 2. If $\ell \| N_p, \ell | (p-1)$, then $f = \ell$ and $\ell^2 | N_{p\ell}$.

Proof. We put $E' = E \mod p$, $E'_{\ell} = \{a \in E' \mid \ell a = 0\}$. First we note that the degree f is nothing but the order of π in $(o/\ell o)^{\times}$. Indeed, f =the degree of p in $K_{\ell}/Q \Leftrightarrow [Q_p(E_{\ell}) : Q_p] = f \Leftrightarrow [F_p(E'_{\ell}) : F_p] = f \Leftrightarrow \pi^{f} \equiv 1 \mod \ell o, \pi^n \not\equiv 1 \mod \ell o$ for all n < f. (For the second \Leftrightarrow , see [4] p. 672.) And this shows especially that $\ell^2 | N_{pf}$ and $\ell | (p^f - 1)$. Put $p^m = q$. When $\ell > 2$, we see $\ell^2 | N_q$, $\ell | (q-1) \Leftrightarrow \ell^2 | (a_q)^2 - 4q$, $a_q \equiv 2 \pmod{\ell}$. So we can write $a_q = 2 + \ell a$, $(a_q)^2 - 4q = \ell^{2s} \cdot n^2(-d)$, $a, s, n, d \in \mathbb{Z}, s > 0$, $\ell \not< n$,