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Let E be an elliptic curve defined over @, and ¢ a rational prime.
Put E,={a e E|¢a=0} and K,=Q(¥,) i.e. the number field generated
over Q by all the coordinates of the points of order £ on E. Then K,/Q
is a galois extension and Gal (K,/Q CGGL,(Z/4Z). When E has no
complex multiplication, Gal(K,/Q)=GL,(Z/¢Z) except for finitely many
2’s ([6]). And we know that GL, (Z/4Z) is non-solvable for ¢>3.

The aim of this note is to investigate the law of decomposition of
primes in K,/Q. Let p be a rational prime (s¢) where E has good
reduction. Then p is unramified in K,/Q. We deal exclusively in that
case. (Note that the method in [7] enables one to determine the de-
grees of most primes but not all, especially the complete splitting case
cannot be determined.)

Let ==, be the p-th power endomorphism of E mod p. Put N,.
=4#(F mod p)(F,») and a,-»=tr (™), where trace is taken with respect
to 4-adic representation of E modp. Then Nyn=1—a,.+p™. (Note
that we can calculate a,» by the value a,). As Endy, (£ mod p) is iso-
morphic to an order o of an imaginary quadratic field k, hereafter we
identify them (so x € 0, k=Q(r)).

Theorem 1. Let £>2 and f be the degree of p in K,/Q, and m
the smallest rational integer >0 which satisfies ¢*| N and £|(p™—1).
Then the following assertions hold. (1) If £24((a,)’—4p), then f=m.
@2 If 2¢|((ap)*—4p), then f=m or fm, according as £|(o: Z[z]) or
not, where o=Endy, (£ mod p).

Corollary 1. p decomposes completely in K,/Q=8*|N,, ¢|(p—1),
£](o: Z[x]).

Corollary 2. If ¢||N,, ¢|(p—1), then f=¢ and £*| N ..

Proof. We put E’=E mod p, E;={a € E’| a=0}. First we note
that the degree f is nothing but the order of = in (o/40)*. Indeed,
Sf=the degree of p in K,/Q5I[Q,(E): Q,1=SSI[F,(E): F,l=f&n’
=1 mod 4o, 271 mod 4o for all n<f. (For the second &, see [4] p.
672.) And this shows especially that ¢*| N,, and ¢|(p/—1). Putp™=q.
When 4>2, we see #*|N,, ¢|(g— D& (0)'—44q, a,=2 (mod £). So
we can write a,=2+ 4o, (a,)*—4q=20*-n*(—4d), a,8,n,de Z, >0, ¢fn,



