31. A Note on Steenrod Operations in the Eilenberg-Moore Spectral Sequence

By Masamitsu Mori

College of Education, University of the Ryukyus

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1977)

1. Introduction and results. Let X be an associative H-space and BX the classifying space of X. The purpose of this note is to describe two kinds of Steenrod operations in the Eilenberg-Moore spectral sequence $\{E_r\}$ such that

 $E_{z}\cong \operatorname{Cotor}_{H^{*}(X; Z_{p})}(Z_{p}, Z_{p}) \Rightarrow H^{*}(BX; Z_{p}),$ where p is a prime.

Our results are stated as follows.

Theorem 1. In the Eilenberg-Moore spectral sequence $\{E_r\}$ there are Steenrod operations

$$\beta^{\mathfrak{s}} \mathcal{P}^{i}: E_{r}^{s,t} \to E_{r}^{s,t+2i(p-1)+\mathfrak{s}}, \qquad 2i \leq t,$$

and

$$\beta^{\epsilon} \mathcal{P}^{i}: E_{r}^{s,t} \rightarrow E_{r}^{s+(2i-t)(p-t)+\epsilon,pt}, \qquad 2i \geq t,$$

where $r \ge 2$ and $\varepsilon = 0$ or 1. Remark. If p=2, we understand $\mathcal{P}^i = Sq^{2i}$ and $\beta \mathcal{P}^i = Sq^{2i+1}$.

Theorem 2. Let $u \in E_r^{s,t}$.

(i) If $2i \le t-r+1$, then $d_r\beta^* \mathcal{P}^i u = (-1)^*\beta^* \mathcal{P}^i d_r u$.

(ii) If $t-r+1 \le 2i \le t$, then $\beta^{\epsilon} \mathcal{P}^{i}u$ survives to $E_{q}^{s,t+2i(p-1)+\epsilon}$, where $q=r+(2i-t+r-1)(p-1)+\epsilon$, $\beta^{\epsilon} \mathcal{P}^{i}d_{r}u$ survives to $E_{q}^{s+q,t+2i(p-1)+\epsilon+q-1}$, and $d_{q}\beta^{\epsilon} \mathcal{P}^{i}u = (-1)^{\epsilon}\beta^{\epsilon} \mathcal{P}^{i}d_{r}u$.

(iii) If $2i \ge t$, then $\beta^* \mathcal{P}^i u$ survives to $E_q^{s+(2i-t)(p-1)+s,pt}$, where q=rp-p+1, $\beta^* \mathcal{P}^i d_r u$ survives to $E_q^{s+(2i-t)(p-1)+s+q,pt+q-1}$, and $d_q \beta^* \mathcal{P}^i u = (-1)^* \beta^* \mathcal{P}^i d_r u$.

Theorem 3. Let $p: F^{s,t} = F^{s,t}H^{s+t}(BX; Z_p) \rightarrow E_{\infty}^{s,t}$ be the natural projection and $u \in F^{s,t}$.

(i) If $2i \le t$, then $\beta^* \mathcal{P}^i u \in F^{s,t}$ and $p\beta^* \mathcal{P}^i u = \beta^* \mathcal{P}^i p u$.

(ii) If $2i \ge t$, then $\beta^{\epsilon} \mathcal{P}^{i} u \in F^{s+(2i-t)(p-1)+\epsilon,t-(2i-t)(p-1)-\epsilon}$ and $p\beta^{\epsilon} \mathcal{P}^{i} u = \beta^{\epsilon} \mathcal{P}^{i} p u$.

Let $A = H^*(X; Z_p)$. It is well known that two kinds of Steenrod operations are defined on $\text{Cotor}_A(Z_p, Z_p)$, that is, the vertical Steenrod operations

 $\beta^* \mathcal{Q}_{\mathcal{V}}^i: \operatorname{Cotor}_{\mathcal{A}}^{s,t} \to \operatorname{Cotor}_{\mathcal{A}}^{s,t+2i(p-1)+s}, \qquad 2i \leq t,$ and the diagonal Steenrod operations

 $\beta^{\epsilon} \mathcal{Q}_{D}^{i} : \operatorname{Cotor}_{A}^{s,t} \rightarrow \operatorname{Cotor}_{A}^{s+(2i-t)(p-1)+\epsilon,pt}, \quad 2i \geq t,$ which satisfy the usual properties such as Cartan formula and Adem