29. Fundamental Solutions to the Cauchy Problem of Some Weakly Hyperbolic Equation

By Atsushi Yoshikawa

Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1977)

1. Consider the operator

 $L = D_t^2 - t^{2m} \sum_{j,k=1}^n a_{jk} D_j D_k + b_0 D_t + \sum_{j=1}^n b_j D_j + c.$ Here *m* is a positive integer, and $a_{jk} = a_{jk}(t, x)$, $b_l = b_l(t, x)$, $c = c(t, x)C^{\infty}$ functions of $(t, x) = (t, x_1, \dots, x_n) \in \mathbb{R} \times \mathbb{R}^n$. $D_t = -i\partial/\partial t$, $D_j = -i\partial/\partial x_j$, $j = 1, \dots, n$, and $i^2 = -1$ as usual. We assume that $(a_{jk}(t, x))$ be a real symmetric positive definite matrix, reducing to the unit matrix for t, xsufficiently large.

2. Let $\tau \in \mathbf{R}$. Consider the following Cauchy problem :

(*)
$$\begin{cases} Lv(t,x)=0, t > \tau, x \in \mathbb{R}^n, \\ \end{cases}$$

$$|v(t,x)|_{t=\tau} = f_0(x), D_t v(t,x)|_{t=\tau} = f_1(x),$$

 f_0, f_1 being given distributions in $\mathcal{E}'(\mathbf{R}^n)$.

Let $\Delta = \{(t, \tau); \tau \leq t\}.$

Definition. Let $U_j(t,\tau)$, j=0,1, be operators from $\mathcal{E}'(\mathbb{R}^n)$ to $\mathcal{D}'(\mathbb{R}^n)$ with kernels in $C^{\infty}(\mathcal{A}; \mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^n))$. We call $U_j(t,\tau)$, j=0,1, a pair of fundamental solutions to the problem (*) if

$$\begin{array}{ll} LU_{j}(t,\tau) \!=\! 0, \ j \!=\! 0, 1, & \text{in } \Delta, \\ D_{t}^{k}U_{j}(t,\tau) \mid_{t=\tau} \!=\! \delta_{jk}I, & j,k \!=\! 0, 1, \end{array}$$

 δ_{ik} being the Kronecker symbol and I the identity operator.

3. The purpose of the present note is to construct a pair of fundamental solutions to the problem (*) under the conditions explained below. We set

$$a(t, x, \xi) = (\sum_{j,k=1}^n a_{jk}(t, x)\xi_j\xi_k)^{1/2}, \quad \xi \in \mathbb{R}^n \setminus 0,$$
 so that the principal symbol of L is

 $L_0(t, x, \xi_0, \xi) = (\xi_0 - t^m a(t, x, \xi))(\xi_0 + t^m a(t, x, \xi)).$

We denote by $S_L(t, x, \xi_0, \xi)$ the subprincipal symbol of L. Thus,

 $S_{L}(t, x, \xi_{0}, \xi) = b_{0}(t, x)\xi_{0} + \sum_{j=1}^{n} b_{j}(t, x)\xi_{j}$

$$+it^{2m}\sum_{j,k=1}^n \xi_k \partial a_{jk}(t,x)/\partial x_j.$$

4. Set

$$C_{L\pm}(t, x, \xi) = S_L(t, x, \pm t^m a(t, x, \xi), \xi).$$

We assume

(1) $C_{L\pm}(t, x, \xi) = t^{m-1}b(x, \xi) + t^m b_{\pm}(t, x, \xi).$

Here $b(x,\xi)$ and $b_{\pm}(t, x, \xi)$ are smooth functions of t, x, ξ . For simplicity, we require that $\text{Im}\{b(x,\xi)/|\xi|\}$ be uniformly bounded on $\mathbb{R}^n \times (\mathbb{R}^n \setminus 0)$.

5. Theorem. Under the assumption (1), there exists a unique