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1o Consider the operator
L--D--ff ,=1 aDjD+boD+=l bDj+c.

Here m is positive integer, and a=a(t, x), b,=b(t, x), c=c(t, x)C
unctions of (t, x)=(t, xx, ., x,) eRR. D,= --i3/3t, D= --i3/3x,
]=1, ..., n, and i=-1 as usual. We assume that (a(t, x)) be a real
symmetric positive definite matrix, reducing to the unit matrix for t, x
sufficiently large.

2. Let r e R. Consider the ollowing Cauchy problem:

Lv(t, x)=0, tr, x e R,( * )
.I.v(t, x)It=--fo(X), Dry(t, x)

f0,f being given distributions in C(R).
Let {(t, r) r _< t}.
Definition. Let U(t, r), ]=0, 1, be operators from C’(R) to_q)’(R)

with kernels in C(z/; _q)’(R R)). We call U(t, r), ]=0, 1, a pair of
fundamental solutions to the problem (.) if

LUg(t, r)----0, ]=0, 1, in z,
DUs(t, r)]__=sI, ], k=0, 1,

3s being the Kronecker symbol and I the identity operator.
3. The purpose o the present note is to construct a pair of funda-

mental solutions to the problem (,) under the conditions explained below.
We set

a(t, x, ) (,= ash(t, x)s)/, e R \O,
SO that the principal symbol o L is

Lo(t, x, o, )-- (o-- ta(t, x, ))(0+ ta(t, x, )).
We denote by S(t, x, o, ) the subprincipal symbol o L. Thus,

Sz(t, x, o, )= b0(t, X)0 f-E=l b(t, x)
27 it2 ,,=1 a(t, x) /x.

4. Set
C+/- (t, x, )=S(t, x, +_ ta(t, x, ), ).

We assume
1 ) C(t,x,)=t-b(x,)+tb(t,x,).

Here b(x, ) and b(t, x, $) are smooth unctions o t, x, . For simpli-
city, we require that Im {b(x, )/11} be uniformly bounded on R (R\0).

5. Theorem. Under the assumption (1), there exists a unique


