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6. We consider the Hamiltonian system containing a parameter
A(>0)
(14) dp/dt=—10H]/oq(p, q, t), dq/dt=20H/op(p, q, t)
in D. If (»°q%t)eD and 1>0, there is a unique solution of (14) in
D passing through (p° ¢° t°,) and prolonged as far as possible to the
both directions of the time ¢, by the regularity of H(p,q,s) in As-
sumption 1.” We denote it by
(15) p=5(, »°, ¢, t°, 2), a=q(¢, »°, ¢", &, 2).
For a fixed (p° ¢° t°)e D and a fix A(>0), (¢, »°, ¢°, t°, 2), q(¢, 2°, @°, t°, 2)
are defined on a subinterval of the time interval a<<¢<<b which may
be open, closed or half-open according to (°,¢°, ¢°, 2).0

Since a?}/as is continuous on D and D is compact, there is a
number M(>0) such that

(16) |0/0s |I<M on D.

THEOREM 3. Let a’ and b be two numbers such that a<a'<?b’
<b and (V'—a)<(JF—J¥)/(2M) and let us put J,=J}—M®b —a’),
J,=JF+M@®'—a’). Then the solution of (14) passing through (p°, q°,
a’) where (p°, ¢°)e I(J,, J,,a’) can be prolonged in D to the time interval
o’ Zt<b for every i(>0).

PrROOF. Let B8 be the least upper bound of B’ such that the
solution in D of (14), p=p(¢, »° ¢°, @', 2), ¢=4q(¢, D°, ¢°, a’, 2) for a fixed
", q")el(J,,J,,a’) and a fixed i>0, can be defined for the time
interval a’<t<p and such that a’<f'<b. Then a’<B=<d’ and this
solution in D can be defined on the the time interval a’<t<p. Since
0H/op, 0H/dq are bounded on D by their continuity on the compact set
D, the functions (¢, 2°, ¢°, @/, ) §.(t, °, @°, &', 2) (i=1,- - -, m) of t repre-
senting a solution of (14) in D, are uniformly continuous on the
interval a’<t<pB. Hence the limits

@, p°, &, @', 2)—>p'(t—>p—0)
a(t’ po, qO’ a,i ])—)Q'(t—)ﬂ—(})
exist and (9, ¢, B)eD.
We shall sometimes abbreviate (¢, 2°, ¢°, @/, 2) and q(¢, »° ¢°, a’, 2)

1) Cf. E. Kamke [1, pp. 135-136 and pp. 137-142].



