90. On the Adiabatic Theorem for the Hamiltonian System of Differential Equations in the Classical Mechanics. III

By Takashi Kasuga

Department of Mathematics, University of Osaka (Comm. by K. Kunugi, M.J.A., July 12, 1961)

6. We consider the Hamiltonian system containing a parameter $\lambda(>0)$

(14)
$$dp/dt = -\lambda \partial H/\partial q(p, q, t), \ dq/dt = \lambda \partial H/\partial p(p, q, t)$$

in D. If $(p^0, q^0, t^0) \in D$ and $\lambda > 0$, there is a unique solution of (14) in D passing through (p^0, q^0, t^0) and prolonged as far as possible to the both directions of the time t, by the regularity of H(p, q, s) in Assumption 1.10 We denote it by

(15)
$$p = \tilde{p}(t, p^0, q^0, t^0, \lambda), q = \tilde{q}(t, p^0, q^0, t^0, \lambda).$$

For a fixed $(p^0, q^0, t^0) \in D$ and a fix $\lambda(>0)$, $\tilde{\mathfrak{p}}(t, p^0, q^0, t^0, \lambda)$, $\tilde{\mathfrak{q}}(t, p^0, q^0, t^0, \lambda)$ are defined on a subinterval of the time interval $a \leq t \leq b$ which may be open, closed or half-open according to (p^0, q^0, t^0, λ) .

Since $\partial \mathfrak{J}/\partial s$ is continuous on \overline{D} and \overline{D} is compact, there is a number M(>0) such that

(16)
$$|\partial \widetilde{\mathfrak{J}}/\partial s| \leq M$$
 on D .

THEOREM 3. Let a' and b' be two numbers such that $a \le a' < b' \le b$ and $(b'-a') < (J_2^* - J_1^*)/(2M)$ and let us put $J_2 = J_2^* - M(b'-a')$, $J_1 = J_1^* + M(b'-a')$. Then the solution of (14) passing through (p^0, q^0, a') where $(p^0, q^0) \in I(J_1, J_2, a')$ can be prolonged in D to the time interval $a' \le t \le b'$ for every $\lambda(>0)$.

PROOF. Let β be the least upper bound of β' such that the solution in D of (14), $p = \tilde{\mathfrak{p}}(t, p^0, q^0, a', \lambda)$, $q = \tilde{\mathfrak{q}}(t, p^0, q^0, a', \lambda)$ for a fixed $(p^0, q^0) \in I(J_1, J_2, a')$ and a fixed $\lambda > 0$, can be defined for the time interval $a' \leq t < \beta'$ and such that $a' < \beta' \leq b'$. Then $a' < \beta \leq b'$ and this solution in D can be defined on the time interval $a' \leq t < \beta$. Since $\partial H/\partial p$, $\partial H/\partial q$ are bounded on D by their continuity on the compact set \overline{D} , the functions $\tilde{\mathfrak{p}}_i(t, p^0, q^0, a', \lambda)$ $\tilde{\mathfrak{q}}_i(t, p^0, q^0, a', \lambda)$ $(i=1, \cdots, n)$ of t representing a solution of (14) in D, are uniformly continuous on the interval $a' \leq t < \beta$. Hence the limits

$$\tilde{\mathfrak{p}}(t, p^0, q^0, a', \lambda) \rightarrow p'(t \rightarrow \beta - 0)$$

 $\tilde{\mathfrak{q}}(t, p^0, q^0, a', \lambda) \rightarrow q'(t \rightarrow \beta - 0)$

exist and $(p', q', \beta) \in \overline{D}$.

We shall sometimes abbreviate $\tilde{p}(t, p^0, q^0, a', \lambda)$ and $\tilde{q}(t, p^0, q^0, a', \lambda)$

¹⁾ Cf. E. Kamke [1, pp. 135-136 and pp. 137-142].