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3. Let (X, m) be a measure space where m is a finite, separable,
and complete measure1) defined on a Borel field in X. A one-param-
eter group {tl--oo<t<+oo} of one-to-one mappings t of X onto
X is called a flow on (X, m). A measurable function f(P) on (X, m)
is called an invariant function of a flow {} on (X, m) if

f(%t(P))=f(P)
almost everywhere on (X, m) for every fixed t and it is called a
strictly invuriant function of a flow [t} on (X, m) if it is defined
everywhere on X and

f(t(P))=f( P)
for all (P, t) such ha Pz X, o <t< + o. A measure-preserving
and measurable flow’ {,} on (X, m) is ergodie (in he sense of J.v.
Neumann) if and only if all is invarian functions are equivalenta’

to constants on (X, m). If a flow {,} on (X, m)is measure-preserv-
ing and measurable, hen we can associate with i a one-parameter
group {1 I--OO <t<: -OO} of unitary transformations lI, on L2(X, m)
by

(ll,f)(P) f(,(P)) f L2(X, m), PeX
and 1t is continuous as a function of t in the strong topology of ltt.4)

If X is a Lebesgue measurable subset of a Euclidean space R
and m is the usual Lebesgue measure in R defined for all Lebesgue
measurable subsets of X, a flow on (X, m) is simply called a flow on
X in the following and we write simply L(X) for L2(X, m).

4. We consider the Hamiltonian system with a parameter s

( 9 ) dp/dt=--Hl’q(p, q, s) dq/dt--H/p(p, q, s).
By Assumption 1, the solution of (9)

(10) p--19(t, pO, qO, s) q--q(t, pO, qO, s)
in the open set I(s) for a fixed s (a<=s_<b)with the initial conditions
(p,q)__(pO, qO)((pO, qO)is)) at t--O, can be uniquely prolonged for the

1) For the definition of complete or separable measure, ef. P. Halmos [1].
2) For the definition of a measure-preserving, a measurable or an ergodic flow on

(X, m), cf. E. Hopf [2, pp. 8-9 and p. 28].
3) Two measurable functions on (X, m) are called equivalent on (X, m) if they coin-

cide almost everywhere on (X, m).
4) For definitions and results concerning flows on a measure space used in this

paper, ef. E. Hopf [2].


