60. On the fundamental differential equations of flat projective geometry.

By Kentaro YANO.

Mathemarical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., Oct. 12, 1945.)

§ 1. In an address given at the International Mathematical Congress at Bologna,¹⁾ Prof. O. Veblen defined the geometry as the theory of an invariant. According to the Erlanger Programm a geometry is the invariant theory of a group. According to the new conception of O. Veblen a geometry is the theory of invariant.

O. Veblen showed, in a lecture to the London Mathematical Society,³ that the classical projective geometry may be regarded as the theory of an invariant subject to certain restrictions. The theory of this invariant free from these restrictions is the so-called generalized projective geometry.

If we introduce a curvilinear coordinate system $(\xi^i)^{3}$ in an *n*-dimensional projective space, the homogeneous projective coordinates Z^{λ} of the space may be expressed in the form

(1.1)
$$Z^{\lambda} = e^{\mathfrak{t}_0} p^{\lambda}_{\mu} f^{\mu}(\xi^i),$$

where $e^{i\theta}$ is an arbitrary factor, p_{μ}^{λ} constants subject only to the condition that the determinant $|p_{\mu}^{\lambda}|$ formed with p_{μ}^{λ} is definent from zero and finally $f^{\lambda}(\xi)$ n+1 analytic functions of ξ^{i} such that the determinant

(1.2)
$$\begin{vmatrix} f^{0}, & f^{1}, & ..., & f^{n} \\ \frac{\partial f^{0}}{\partial \xi^{1}}, & \frac{\partial f}{\partial \xi^{1}}, & ..., & \frac{\partial f^{n}}{\partial \xi^{1}} \\ \\ \frac{\partial f^{0}}{\partial \xi^{n}}, & \frac{\partial f^{1}}{\partial \xi^{n}}, & ..., & \frac{\partial f^{n}}{\partial \xi^{n}} \end{vmatrix} \rightleftharpoons 0.$$

Differentiating (1.1) and eliminating the constants, we find that any n+1 homogeneous projective coordinates Z^{λ} defined as functions of curvilinear coordinates ξ^{i} must satisfy the differential equations

⁽¹⁾ O. Veblen: Differential invariants and geometry. Atti Congresso Internazionale Bologna, 1, (1928), 181-189.

⁽²⁾ O. Veblen: Generalized projective geometry. Journal of the London Math. Soc., 4 (1929), 140-160.

⁽³⁾ Greek indices take the values on the range 0,1,2,..., n and Roman indices on the range 1,2,..., n.