57. A note on generalized convex functions.

By Sitiro HANAI.

Nagaoka Technical College.
(Comm. by S. Kakeya, m.I.A., July 12, 1945.)
§1. We are concerned with real finite functions $f(x)$ defined on a closed interval $a \leqq x \leqq b$. E. F. Beckenbach ${ }^{11}$ has given a generalization of the notion of a convex function as follows.

Let $\boldsymbol{F}(x ; \alpha, \beta)$ be a two-parameter family of real finite functions defined on $a \leqq x \leqq b$ and satisfying the follwing conditions:
(1) each $F(x ; \alpha, \beta)$ is a continuous function of x;
(2) there is a unique member of the family which, at arbitrary x_{1}, x_{2} satisfying $a \leqq x_{1}<x_{2} \leqq b$, takes on arbitrary values y_{1}, y_{2} 。

The members of the family $F(x ; \alpha, \beta)$ are denoted simply by $F(x)$, individual members being distinguished by subscripts. In particular, $F_{i j}(x)$ denotes the member satisfying $F_{i j}\left(x_{i}\right)=f\left(x_{i}\right), F_{i j}\left(x_{j}\right)=f\left(x_{i}\right),\left(a \leqq x_{i}<x_{j} \leqq b\right)$.

We call a function $f(x)$ to be convex in Beckenbach's sense if

$$
f(x) \leqq F_{10}(x)
$$

for all x_{1}, x_{2}, x, with $a \leqq x_{1}<x<x_{2} \leqq b$.
Now let the family $F(x ; \alpha, \beta)$ satisfy the following condition (3) in addition to (1) and (2):
(3) let $F(x), F^{\prime}(x)$ be the members of the family passing through arbitrary points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) ;\left(x_{1}, y_{1}^{\prime}\right),\left(x_{2}, y_{2}^{\prime}\right)$ respectively, then, the member $\boldsymbol{F}_{\lambda}(x)(\lambda>0)$ which passes through $\left(x_{1}, \lambda y_{1}\right),\left(x_{2}, \lambda y_{2}\right)$ is not less than $\lambda F(x)$ for $a \leqq x_{1}<x<x_{2} \leqq b$, and the member passing through ($x_{1}, y_{1}+y_{1}^{\prime}$), $\left(x_{2}, y_{2}+y_{2}^{\prime}\right)$ is not less than $F(x)+F^{\prime}(x)$ for $a \leqq x_{1}<x<x_{2} \leqq b$.

Definition. A function $f(x)$ is called a generalized convex function if the family $F(x ; \alpha, \beta)$ satisfies the condition (1), (2), and (3), and $f(x) \leqq$ $F_{12}(x)$ for all x_{1}, x_{2}, x, with $a \leqq x_{1}<x<x_{2} \leqq b$.

For instance, (a) when $F(x ; \alpha, \beta) \equiv \alpha x+\beta$, then $F(x ; \alpha, \beta)$ satisfies the conditions (1), (2), and (3) and therefore the convex function in the usual sense is a generalized convex function, (b) when $F(x ; \alpha, \beta) \equiv \alpha \sin \rho x+B \cos \rho x$ where ρ is a constant and $b-a<\frac{\pi}{\rho}$, then $F(x ; \alpha, \beta)$ satisfies (1), (2), and (3) and

[^0]
[^0]: 1) E. F. Beckenbach; Generalized convex functions, Bull. Amer. Math. Soc. Vol. 43 (1937), 363-371.
