47. Algebraic Equaton, whose Roots lie in a Unit Circle or in a Half-plane.

By Masatsugu TsuJt.

Mathematical Institute, Tokyo University.

(Comm. by S. Kakeya, M.I.A., May 12, 1945.)
I. Algebraic equations, whose roots lie in a unit circle.

1. In this paper \bar{a} means the conjugate complex of a. Let

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}, f^{*}(x)=x^{\bar{n}} f\left(\frac{1}{x}\right)=\overline{a_{n}}+\overline{a_{n-1}} x+\ldots+\overline{a_{0}} x^{n}
$$

$$
A=\left(\begin{array}{l}
a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} \tag{1}\\
0, a_{0}, a_{1}, \ldots, a_{n-0} \\
0,0, a_{0}, \ldots, a_{n-3} \\
\ldots \ldots \ldots \ldots \\
0,0,0, \ldots, a^{n}
\end{array}\right), \quad \overline{A^{\prime}}=\left(\begin{array}{llll}
\overline{a_{0}}, & \mathbf{0}, & 0, & \ldots, 0 \\
\overline{a_{1}}, & \bar{a}, & 0, & \ldots, 0 \\
\overline{a_{2}}, & \overline{a_{i}}, & \overline{a_{0}}, & \ldots, 0 \\
\ldots \ldots \ldots \ldots . & \\
\overline{a_{n-1}}, \overline{a_{n-2}}, \overline{a_{n-3}}, \ldots, \overline{a_{0}}
\end{array}\right),
$$

$$
\mathfrak{F}=\bar{B}^{\prime} B-\bar{A}^{\prime} A=\left(\gamma_{i k}\right),|\mathscr{H}|=\operatorname{det} .\left(\gamma_{k k}\right),
$$

$$
\begin{equation*}
\mathcal{F}(x)=\sum_{0}^{n-1} \gamma_{i k} x_{i} \bar{x}_{k},\left(\gamma_{k i}=\bar{\gamma}_{i k}\right) \tag{2}
\end{equation*}
$$

We denote the determinant of a matrix A by $|A|$ and its ν-th section by A_{ν}, which is a matrix formed with elements of A lying in the first ν rows and

