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1. Let ba the family of analytic functions (z) which are regular and

sehlicht in the interior of the unit circle E: Izl <1 ad further are normalized

at the origin in such a way that F(0)=0,/r(0)--l. The theory of this family

has been developed by various methods. Among them, one based upon the so-

called Lhwner’s differential equation1) on bounded slit mapping of E has been,
especially first by Sovietie mathematioins G. M. Golusin, J. Basilewitseh etc.,

shown to be very fruitful. Let B be a bounded slit domairt obtained from w < 1

by cutting it along a Jordan are which lies in wl<l save an end-point and

does not pass through the origin. The mapping function

f(0)=e-’, of E onto B is then regarded as the integral f(z)----f(z, to) of the

so-called Lhwner’s differential equation.

(1.1) dr(z, t) =--f(z, t) 1 + (t)f(z, t) (O<t<t0)
Ot 1-(t)f(z, t)

with initial condition f(z, 0)=z, (t) being a continuous function weose absolute

value is identically equal to unity. Each function w=f(z, t), for which f(O, t)
0 and f(0, t) e-t, gives also a bounded slit mapping of E. Introduce now

a new family of sli mapping functions {h(z, t) (Otto) by functional relation

(1.) f()=h(f(, t), t).
Then the differenial equation for this family becomes

(1.3) dh(z, t) z-l + tc(t)z dh(z,,t) (tot:>_O)

with boundary conditions h(z, t0)=z and h(z, 0) =f(z).
Now, remembering the structure of Lhwner’s differential equation, we

expee tha analogous equations can be constructed in various ways from more

general poin of view. We consider, in general, a function o-F(z) which maps

3 onto a given simply connected domain D in the w.plae. Suppose hut a fmily

of simply connected domains {D} with a real parameter (0t0) be const-

ructed in such a way that Do and Dto coincide with the domains wl <21 and D

1) K. LSwner, Untersuchungen fiber schlichte konforme Abbildungen des Einheitskreises,
I. bl:ath. Ann. g9 (1923), 103-121.


