No. 2.]

18. Fundamental Theory of Toothed Gearing (III).

By Kaneo YAMADA.

Department of Applied Dynamics, Tôhoku University, Sendai. (Comm. by T. Kubota, M.J.A., Feb. 12, 1949.)

Suppose that a pair of pitch curves K_1 and K_2 and a pair of profile curves F_1 and F_2 invariably connected with K_1 and K_2 be given. Let P be a common pitch point at a certain instant, C be the point of contact of F_1 and F_2 corresponding to P. Suppose that after infinitesimal time interval dt two points P_1 and P_2 on K_1 and K_2 and two points C_1 and C_2 on F_1 and F_2 may respectively come to the point of contact. Denote by ds the length of the arc PP_1 , and consequently that of PP_2 , and by dp_1 and dp_2 the lengths of the arcs CC_1 and CC_2 respectively. The pitch curve K is oriented and accordingly ds has a sign positive or negative. We shall give also a sign to dp; dp is positive or negative according as the part of arc dp of the profile curve F is of positive or negative type.

§ 1. Sliding of profile curves.

At the sliding contact motion of F_1 and F_2 during the time dt the point C on F_1 slides along F_2 for the distance dp_2-dp_1 , and consequently its velocity v_{p1} is given by

$$(1)_{i}$$
 $v_{p_{1}} = \frac{dp_{2} - dp_{1}}{dt}$.

 v_{p1} is named the velocity of sliding of F_1 (at the point C on F_2). In like manner the velocity of sliding of F_2 may be defined:

$$(1)_2 v_{p2} = rac{dp_1 - dp_2}{dt}$$
 .

Evidently v_{p1} and v_{p2} have the same absolute value and the different signs.

Denoted by ω_1 and ω_2 respectively the instant angular velocities of K_1 and K_2 at their rolling contact motions, and we say that the sign of the angular velocity ω is positive or negative according as K rotates clockwise or counter-clockwise. Denoting by α_1 and α_2 the radii of curvature of K_1 and K_2 respectively at the instant common pitch point P we have

(2)
$$\omega_1 = \frac{1}{a_1} \frac{ds}{dt}, \qquad \omega_2 = \frac{1}{a_2} \frac{ds}{dt}.$$

Let ω denote the relative rolling angular velocity of K_1 to K_2 , then obviously $\omega = \omega_1 - \omega_2$ and accordingly from (2)