78. An Alternative Proof of a Generalized Principal Ideal Theorem.

By Tadao TANNAKA.

Mathematical Institute, Tohoko University, Sendai.

(Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1949.)

Recentry Mr. Terada¹¹ has proved the following generalized principal theorem :

Theorem. Let K be the absolute class field over k, and \mathcal{Q} a cycic intermediate field of $K^{i}k$, then all the ambigous ideal classes of \mathcal{Q} will become principal in K.

I also generalized this theorem to the case of ray class field.²⁾

By using Artin's law of reciprocity we can state above theorem in terms of the Galois group, and we have

Theorem. Let G be a metabelian group with commutator subgroup G', H be an invariant subgroup of G with the cyclic quotient group G'H, and A element of H with $ASA^{-1}S^{-1}\epsilon H'$ (S being a generator of G/H), then the "Verlagerung" $V(A) = \prod TA\overline{T}\overline{A}^{-1}$ from H to G' is the unit element of G. Thereby T runs over a fixed representative system of G_iH , and \overline{TA} means the representative corresponding to the coset $\overline{TAG'}$.

At first we tried to solve this by means of Iyanaga's method depending upon Artin's splitting group,³⁾ which is generated by G' and the symbols $A_{\sigma}(A_1 = 1, \sigma \epsilon I' = G/G')$, and with I' as operator system by rules

(1) $U^{\sigma} = S_{\sigma} U S_{\sigma}^{-+} (U \varepsilon G'),$

$$A^{o}_{\tau} = A^{-1}_{o} A_{\sigma\tau} D^{-1}_{\sigma,\tau},$$

S_o being the representative of G/G' corresponding to $\sigma \varepsilon \Gamma$, and

 $D_{\sigma,\tau} = S_{\sigma}S_{\tau}S_{\sigma\tau}^{-1}.$

But it seemed to us as if his method were not so easily applicable to our problem, and Terada at last checked the classical method of Furtwängler,⁴) which brought him to success, after a rather complicated computation.

Here I will give a more simple proof, which depends upon Artin's splitting group.