67. A Note on Extensions of Groups.

By Hiroshi NAGAO.

(Comm. by Z. SUETUNA, M. J. A., Nov. 12, 1919.)

1. If a group \mathfrak{G} contains a normal subgroup \mathfrak{N} and $\mathfrak{G}/\mathfrak{N}$ is isomorphic to \mathfrak{A} , we call \mathfrak{G} an *extension of* \mathfrak{N} by \mathfrak{A} . The problem of extension is to obtain all extensions of \mathfrak{N} by \mathfrak{A} when \mathfrak{N} and \mathfrak{A} are given. The conditions to determine every extension were at first given by O. Schreier¹⁾ and afterwards by K. Shoda²⁾ in another way.

This note is devided in two parts. In section 2, we shall show that the problem of extension can be reduced in a sense to the case when \mathfrak{N} is abelian, and in section 3, we shall consider central extensions of \mathfrak{N} by \mathfrak{A} under the assumption that \mathfrak{N} and \mathfrak{A} are both abelian, where an extension of \mathfrak{N} by \mathfrak{A} is called a *central extension* when \mathfrak{N} is contained in its center.

2. From the theorem of O. Schreier, any extension of \mathfrak{N} by \mathfrak{A} may be determined by a factor set $\{C_{a,b}\}$ and a homomorphic mapping $\overline{\sigma}$ of \mathfrak{A} into the residue class group of the automorphism group of \mathfrak{N} by its inner automorphism group. We shall call such extension a $\overline{\sigma}$ -extension. Let σ be a mapping from \mathfrak{A} into the automorphism group of \mathfrak{N} such that the residue class containing σa is equal to $\overline{\sigma} a$). Then any $\overline{\sigma}$ -extension may be determined by a factor set $\{C_{a,b}\}$ which satisfies the following conditions:

1) $A^{\sigma(a)\sigma(b)} = C_{a,b}^{-1} A^{\sigma(ab)} C_{a,b}$ $(A \in \mathfrak{N}; a, b \in \mathfrak{N})$

2) $C_{ab,c}C_{a,b}^{\sigma(c)} = C_{a,bc}C_{b,c}$.

We shall call such factor set a σ -factor set.

Theorem 1. Let $\{C_{a,v}\}$ and $\{D_{a,v}\}$ be two σ -factor sets. Then the set $\{Z_{a,v} = D_{a,v}C_{a,v}^{-1}\}$ is contained in the center B of \mathfrak{N} and satisfies the following conditions:

3) $Z_{ab,c}Z_{a,b}^{o(c)} = Z_{a,bc}Z_{b,c}$.

Conversely, if $\{C_{a,b}\}$ is a σ -factor set, and if $\{Z_{a,b}\}$ is contained in β and satisfies 3), then $\{D_{a,b} = C_{a,b}Z_{a,b}\}$ is a σ -factor set.

Proof. If $\{C_{a,b}\}$ and $\{D_{a,b}\}$ are both σ -factor sets, then from 1) $C_{a,b}^{-1}AC_{a,b} = D_{a,b}^{-1}AD_{a,b}$ for any $A \in \mathfrak{N}$, hence $Z_{a,b} = D_{a,b}C_{a,b}^{-1} \in \mathfrak{Z}$. Further, since

¹⁾ O. Schreier : Über die Erweiterung von Gruppen, Monatshefte für Math. u. Phisik, 34 (1926) 321-346.

²⁾ K. Shoda: Über die Schreiersche Erweiterungstheorie. Proc. Acad. Tokyo (1943) 518-519.