55. On the Foci of Algebraic Curves.

By Asajiro Ichida.

Lecturer at the Waseda University.
(Comm. by T. Kubota, m. J. A., Sept. 13, 1949.)

1. The points of intersection of tangents drawn from the imaginary circular points at infinity to an algebraic curve of the n-th class are called the Foci of the algebraic curves. As is known there are n^{2} foci. Now we determine the locus of foci of algebraic curves in the pencil of algebraic curves of the n-th class, and make the extention of it in space.
2. Let us prove the dual theorem.

Theorem 1. Supposing the points P, Q to be intersections of variable algebraic curve in the pencil of algebraic curves of the n-th order with the two given straight lines g, h, the straight. line $F Q$ el elops an algebraic curve of the $(2 n-1)$-th class, which has the straight lines g, h as $(n-1)$-ple tangents.

Proof. In proving the above theorem, let us assume the equation of the pencil of algebraic curves of the n-th order to be

$$
\begin{aligned}
& \sum_{i+j+k=n} A_{i j k} \cdot x^{l} y^{j} z^{i}=0, \\
& A_{i f k}=a_{i j k}+\lambda b_{i j k}
\end{aligned}
$$

and the straight lines g, h

$$
\begin{array}{ll}
g ; & z=0, \\
h ; & y=0,
\end{array}
$$

then the coordinates of the point $P\left(x_{1}, y_{1}, 0\right)$ are given by

$$
\sum_{t+J=n} A_{i j 0} x^{l} y^{j}=0,
$$

and the coordinates of the point $Q\left(x_{1}{ }^{\prime}, 0, z_{1}{ }^{\prime}\right)$ are given by

$$
\sum_{t+k=n} A_{t 00} x^{t} z^{k}=0 .
$$

Let us use line coordinates u, v, w of the line $F Q$, then we have

$$
\begin{aligned}
& u x_{1}+v y_{1}=0, \\
& u x_{1}^{\prime}+w z_{1}^{\prime}=0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{b+j=n} A_{i j 0}(-1)^{i} v^{i} u^{j}=0, \\
& \sum_{i+k=h} A_{i v v_{k}}(-1)^{i} w^{i} u^{i}=0 .
\end{aligned}
$$

Eilminating λ, from both equations, we get

