27. On the Radiation Pressure in a Planetary Nebula. I.

By Wasaburo UNNO.

(Comm. by Y. HAGIHARA, M.J.A., June 12, 1950.)

Abstract.

The radiation pressure of the Lyman α line-radiation in a planetary nebula is discussed. Zanstra's¹) idea of redistribution in frequency in the line-contour is taken into account in detail. The equation of transfer of the Lyman α radiation with redistribution mechanism is solved in contrast with Zanstra's rough treatment in which a definite form of emission and complete redistribution are assumed. The result obtained is found to be nearly the same as in Zanstra's theory. The radiation pressure due to the Lyman α radiation is so much reduced that we should be able to get rid of the blowing-up difficulty of planetary nebula in Ambarzumian's²) theory. Thus it is confirmed that the complete redistribution is a good approximation to the solution of this problem.

1. The fundamental equation.

The basic equation for the transfer of the Lyman α radiation in the shell of a planetary nebula is taken to be

$$\cos\theta \frac{dI(\nu, z, \theta)}{\rho dz} = -I(\nu, z, \theta) \int \sigma \left(\nu \left[1 - \frac{1}{c}(vr)\right]\right) \psi(v) dv$$

+ $\frac{1}{4\pi} \iint dv dr' \sigma \left(\nu \left[1 - \frac{1}{c}(vr)\right]\right) \psi(v) I\left(\nu \left[1 - \frac{1}{c}(vr)\right] + \frac{1}{c}(vr')\right], z, \theta'\right) + Se^{-\tau} \int \sigma \left(\nu \left[1 - \frac{1}{c}(vr)\right]\right) \psi(v) dv, (1)$

where z-axis is taken in the direction of direct radiation from the central star, $I(\nu, z, \theta)$ the intensity of the L_{α} radiation at an angle θ with the z-axis at the distance z from the inner boundary of the nebula, $\psi(v) dv$ is the well-known Maxwellian velocity distribution of the hydrogen atom in its ground state, σ the natural damping contour, and $Se^{-\tau}$ is assumed to be the amount of the L_{α} emission followed by the absorption of the Lyman continuum at the optical thickness τ :

$$S = \frac{\nu_c}{\nu} \frac{\kappa_c}{2\sigma_0} \frac{1}{4} S_c (1-p),$$

where S_{σ} is the intensity of the Lyman continuum at the inner boundary ν_{σ} the frequency of Lyman limit, κ_{σ} and σ_{0} are the absorption coefficients at the Lyman limit and the line center of Doppler contour of the L_{α} . The first term of the right hand side in the equation (1) is due to the absorption and the second and the third

¹⁾ H. Zanstra: B. A. N., 11, No. 401, 1, 1949.

²⁾ V. A. Ambarzumian: M. N., **93**, 50, 1932. Y. Hagihara: Jap. J. Astr. Geophys., **15**, 1, 1938; **20**, 113, 1943. Hagihara & Hatanaka: *ibid.*, **19**, 135, 1942.