56. On the Zeros of Dirichlet's L-Functions.

By Tikao Tatuzawa.

(Comm. by Z. SUETUNA, M.J.A., Nov. 13, 1950.)

We put $h = \varphi(k)$ where k is a positive integer and $\varphi(k)$ is Euler's function. Let $\chi(n)$ denote one of the h Dirichlet's characters with modulus k. $\overline{\chi}$ is the conjugate complex character of χ . $\zeta(s,w)$ and $L(s,\chi)$ denote the functions defined for $\sigma > 1$ by $\sum_{n=0}^{\infty} (n+w)^{-s}$ and $\sum_{n=1}^{\infty} \chi(n)n^{-s}$ respectively, where $0 < w \leq 1$ and $s = \sigma + ti$. Throughout the paper, the notations $A \ll B$ and A = O(B) for B > 0show that $|A| \leq KB$, where K is a positive absolute constant.

We know from the recent work of *Rodosskii* ([11], Theorem 1.) that the number of $L(s, \chi)$ which have a zero in the rectangle

$$1 - \frac{\psi(k)}{\log kT} \leq \sigma \leq 1, |t - T_1| \leq K \log^2 kT$$

where $\frac{1}{4} \log k \ge \psi(k) \ge \log \log k$ and $T = |T_1| + 2$ does not exceed $B \exp(A \psi(k) + 5 \log \log kT)$. From this we are able to deduce that the total number of zeros of all the *L*-functions with modulus k in the above rectangle does not exceed

$$C \exp \left(A \psi \left(k\right) + 8 \log \log kT\right) \tag{1}$$

where A, B, C and K are positive absolute constants.

The aim of this paper is to estimate the total number N(a, T) of zeros of all the L-functions with modulus k in the rectangle

$$a \leq \sigma \leq 1, |t| \leq T$$

using Ingham's method [7]. The main result is that, if

$$\zeta(\frac{1}{2} + ti, w) - w^{-\frac{1}{2} - ti} = O(|t|^{\circ})$$
(2)

where c is a positive absolute constant, then

$$N(a, T) = O\{(k^{4}T^{4c} (T+k)^{2})^{1-\alpha} \log^{s} kT\}$$

for $\frac{1}{2} \leq a \leq 1$, $T \geq 2$. From this we are also able to deduce (1) and so *Rodosskii's* main theorem ([11], Theorem 2.) in the theory of primes in an arithmetic progression.

We use some well known theorems in the theory of functions in the following forms.

Theorem A. (Jensen, [6], Theorem D, p. 49.) Suppose that