138 [Vol. 27,

29. On a Topological Method in Semi-Ordered Linear Spaces.

By Ichiro AMEMIYA.

(Comm. by K. KUNUGI, M.J.A., March 12, 1951.)

In Banach spaces, we always obtain a continuous linear functional as the limit of a weakly converging sequence of continuous linear functionals. And this property is based on a fact that a complete metric space is of second category. In continuous semi-ordered linear spaces, bounded (continuous or universally continuous) linear functionals have the same property. To investigate the relation of these two cases, first in §1 we will define a kind of topology in abstract spaces by which we obtain a topological space having the property akin to that of second category one under some condition. In §2 applying it to semi-ordered linear spaces we will show that we can discuss the problem mentioned above by the topological method.

We shall make use of notations in the books of H. Nakano⁵).

§ 1. Cell-topology.

Let R be an abstract space. For a family $\mathfrak L$ of subsets of R we denote by $\bar{\mathfrak L}$ the least totally aditive family including $\mathfrak L$ and the null set $\mathfrak L$, and by $\mathfrak L$ the family of all the set K such that $K \in \bar{\mathfrak L}$ implies $K \subset \bar{\mathfrak L}$. Then we can see easily that $\mathfrak L$ satisfies the topological conditions and hence we obtain a topology in K by which the family of all the open sets coincides with K. For brevity we will call it the topology by a cell-system K and a set belonging in K a cell. If K satisfies the following condition:

(1) $\mathfrak{L} \ni C_{\nu} \ (\nu = 1, 2...)$ $C_1 \supset C_2 \supset \cdots$, implies $\prod_{\nu=1}^{\infty} C_{\nu} \neq 0$, then a cell system \mathfrak{L} is said to be *complete*.

Let R be a topological space by a complete cell-system $\mathfrak L$ in the sequel. Then R has the following important property:

Theorem 1.I. For the sequence of closed sets B_{ν} ($\nu=1, 2....$), if every B_{ν} includes no cells, then the union $\sum_{\nu=1}^{\infty} B_{\nu}$ also includes no cells.

Proof. If $\sum_{\nu=1}^{\infty} B_{\nu} > C \in \mathfrak{L}$ then there exist $C_{\nu} \in \mathfrak{L}$ ($\nu = 1, 2, \ldots$) such that $B'_{1}C > C$, $B'_{2}C_{1} > C_{2} \ldots B'_{\nu}C_{\nu-1} > C_{\nu} \ldots$ because B'_{ν} is open and $\bar{\mathfrak{L}} \ni B'_{\nu}C_{\nu-1} \neq 0$. Therefore by (1) we obtain that $0 \neq C \overset{\text{iff}}{\underset{\nu=1}{\square}} C_{\nu} \subset C \overset{\text{iff}}{\underset{\nu=1}{\square}} B'_{\nu} = C(\overset{\text{iff}}{\underset{\nu=1}{\square}} B_{\nu})'$ and come to the contradiction.