28. On the Simple Extension of a Space with Respect to a Uniformity. II.

By Kiiti Morita.

(Comm. by K. KUNUGI, M.J.A., March 12, 1951.)

The present note is a continuation of our previous study concerning the simple extension of a space with respect to a uniformity¹). As an application we deduce Shanin's theory on the bicompact extensions of topological spaces²). We use the same terminologies and notations as in the first note which will be cited with I.

§ 1. A characterization of the simple extension. Let R^* be the simple extension of a space R with respect to a uniformity $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}^{s}$. Then we have

Lemma 1. For an open set G of R it holds that $G^* = R^* - \overline{R-G}$, where the bar indicates the closure operation in R^* .

Proof. Since $(R-G) \cdot G^* = 0$ by I, Lemma 5, we have $R-G \subset R^*-G^*$ and hence $\overline{R-G} \subset R^*-G^*$. On the other hand, if $x \in R^*-G^*$, then, for any open set H of R such that $x \in H^*$, we have $H^*(R^*-G^*) \neq 0$, and hence $H^*(R-G) \neq 0$; this shows that $R^*-G^* \subset \overline{R-G}$.

Theorem 1. The simple extension R^* of a space R with respect to a uniformity $\{\mathfrak{ll}_a; \alpha \in \Omega\}$ is characterized as a space S with the following properties (i.e. such a space S is mapped on R^* by a homeomorphism which leaves each point of R invariant):

(1) R is a subspace of S.

(2) $\{S-\overline{R-G}; G \text{ open in } R\}$ is a basis of open sets of S.

(3) Each point of S-R is closed.

(4) $\mathfrak{B}_a = \{S - \overline{R - U}; U \in \mathfrak{U}_a\}$ is an open covering of S.

(5) $\{S(x, \mathfrak{V}_a); \alpha \in \Omega\}$ is a basis of neighbourhoods at the point x of S-R.

(6) For any point x of S-R there exists a vanishing Cauchy family $\{X_{\lambda}\}$ of R (with respect to $\{\mathfrak{U}_{a}\}$) such that $x = II\overline{X}_{\lambda}$ in S, and

¹⁾ K. Morita: On the simple extension of a space with respect to a uniformity, I, the Proc. 27, No. 2 (1951).

²⁾ N. A. Shanin: Doklady URSS, 38 (1943), pp. 3-6; pp. 110-113; pp. 154-156. These papers are not yet accessible to us; we knew the results only by Math. Reviews.

³⁾ Cf. I, §§1 and 3. It is to be noted that a space means here a neighbourhood space such that the family of all open sets containing a point p forms a basis of neighbourhoods of p.