# 28. On the Simple Extension of a Space with Respect to a Uniformity. II. 

By Kiiti Morita.

(Comm. by K. Kunugi, m.J.A., March 12, 1951.)
The present note is a continuation of our previous study concerning the simple extension of a space with respect to a uniformity ${ }^{11}$. As an application we deduce Shanin's theory on the bicompact extensions of topological spaces ${ }^{2}$. We use the same terminologies and notations as in the first note which will be cited with I.
$\S$ 1. A characterization of the simple extension. Let $R^{*}$ be the simple extension of a space $R$ with respect to a uniformity $\left\{\mathfrak{u}_{\alpha} ; \alpha \in \Omega\right\}^{3}$. Then we have

Lemma 1. For an open set $G$ of $R$ it holds that $G^{*}=R^{*}-\overline{R-G}$, where the bar indicates the closure operation in $R^{*}$.

Proof. Since $(R-G) \cdot G^{*}=0$ by I, Lemma 5, we have $R-G \subset R^{*}-G^{*}$ and hence $\overline{R-G}<R^{*}-G^{*}$. On the other hand, if $x \in R^{*}-G^{*}$, then, for any open set $H$ of $R$ such that $x \in H^{*}$, we have $H^{*}\left(R^{*}-G^{*}\right) \neq 0$, and hence $H^{*}(R-G) \neq 0$; this shows that $R^{*}-G^{*}<\overline{R-G}$.

Theorem 1. The simple extension $R^{*}$ of a space $R$ with respect to a uniformity $\left\{\mathfrak{U}_{a} ; \alpha \in \Omega\right\}$ is chara'terized as a space $S$ with the following properties (i.e. such a space $S$ is mapped on $R^{*}$ by a homeomorphism which leaves each point of $R$ invariant):
(1) $R$ is a subspace of $S$.
(2) $\{S-\overline{R-G} ; G$ open in $R\}$ is a basis of open sets of $S$.
(3) Each point of $S-R$ is closed.
(4) $\mathfrak{B}_{\alpha}=\left\{S-\overline{R-U} ; U \in \mathfrak{U}_{\alpha}\right\}$ is an open covering of $S$.
(5) $\left\{S\left(x, \mathfrak{B}_{\alpha}\right) ; \alpha \in \Omega\right\}$ is a basis of neighbourhoods at the point $x$ of $S-R$.
(6) For any point $x$ of $S-R$ there exists a vanishing Cauchy fami?y $\left\{X_{\lambda}\right\}$ of $K$ (with respect to $\left\{\mathfrak{n}_{a}\right\}$ ) such that $x=I I \bar{X}_{\lambda}$ in $S$, and

[^0]
[^0]:    1) K. Morita: On the simple extension of a space with respect to a uniformity, I, the Proc. 27, No. 2 (1951).
    2) N. A. Shanin : Doklady URSS, 38 (1943), pp. 3-6; pp. 110-113; pp. 154-156. These papers are not yet accessible to us; we knew the results only by Math. Reviews.
    3) Cf. I, $\S \delta 1$ and 3 . It is to be noted that a space means here a neighbourhood space such that the family of all open sets containing a point $p$ forms a basis of neighbourhoods of $p$.
