122 [Vol. 27,

27. Theorems on the Convexity of Bounded Functions.

By Yasuharu SASAKI.

Faculty of Engineering, Fukui College. (Comm. by K. Kunugi, M.J.A., March 12, 1951.)

§ 1. Introduction.

We denote by R_M the family of functions $\{F_{(z)}\}$ which are regular in |z| < 1 and have the properties

$$|F(z)| \le M \ (M \ge 1), \ F(0) = 0, \ F'(0) = 1,$$

and by S_M the family of functions $\{F(z)\}$ which belong to R_M and schlicht in |z| < 1.

Dieudonne¹⁾ has proved that any function F(z) of the class R_M is schlicht in $|z| < M - \sqrt{M^2 - 1}$ and this circle is transformed into a starshaped region in w-plane by w = F(z) and the number $M - \sqrt{M^2 - 1}$ cannot be replaced by any greater one, and R. Nevanlinna²⁾ has proved that, for any function F(z) which is regular, schlicht in |z| < 1 and has the properties F(o) = 0, F'(o) = 1, the "Rundungsschranke" is $2 - \sqrt{3}$.

In this paper, we will find the greatest circle in which any function F(z) of the class R_M is convex, and the "Rundungs-schranke" of the class S_M . For this purpose we will show some lemmas in § 2 and will treat the problems cited above in § 3 and 4.

§ 2. Lemmas.

Let F(z) be any function of the class R_M , then Lemma 1

$$M|z|\frac{1-M|z|}{M-|z|} \le |F(z)| \le M|z|\frac{1+M|z|}{M+|z|}, \qquad |z| < 1.$$

Lemma 2 (Simonart)³⁾

$$\frac{(M+|F(z)|)\,(|F(z)|-M|z|^2)}{M|z|(1-|z|^2)} \leq |F'(z)| \leq \frac{(M-|F(z)|)\,(|F(z)|+M|z|^2)}{M|z|(1-|z|^2)}, |z| < 1.$$

Lemma 34)

Let $F(z) = \sum_{\nu=1}^{\infty} c_{\nu} z^{\nu}$ be regular and |F(z)| < M in |z| < 1, then

$$M-rac{|c_1|^2}{M} \geq |c_2|$$
.

For the function F(z) which belongs to the class S_M , the function of ζ .