60. Theorems on the Cluster Sets of Pseudo-Analytic Functions.

By Tokunosuke YOSIDA. Kyoto Technical University. (Comm. by K. KUNUGI, M.J.A., June 12, 1951.)

Let *D* be a domain on the *z*-plane and *C* be its boundary. Let *E* be a bounded closed set of capacity¹) zero, included in *C* and z_0 be a point in *E*. Let w = f(z) be a single-valued function pseudoanalytic in *D*. The cluster set $S_{z_0}^{(D)}$ is the set of all values α such that $\alpha = \lim_{n \to \infty} f(z_n)$, where $z_n (n = 1, 2, ...)$ is a sequence of points tending to z_0 inside *D*. The cluster set $S_{z_0}^{*(C)}$ is the intersection of the closure of the union $US_{z'}^{(D)}$ for all z' belonging to the part of C-E, which lies in $|z-z_0| < r$.

Since E is of capacity zero, by Evan's theorem²), we can distribute a positive measure $d\mu(a)$ on E such that its potential

$$u(z) = \int_{E} \log \frac{1}{|z-a|} d\mu(a), \qquad \int_{E} d\mu(a) = 1$$

is harmonic outside E, excluding $z = \infty$, and has boundary value $+\infty$ at any point of E. Let v(z) be its conjugate harmonic function and put

$$\zeta = \zeta(z) = e^{u(z) + iv(z)} = r(z)e^{iv(z)} = re^{i\theta}.$$

The niveau curve $C_r: r(z) = \text{const.} = r (0 < r < +\infty)$ consists of a finite number of Jordan curves surrounding E. Let J_r be its component which surrounds z_0 . Let V_r be the closure of the set of all values taken by f(z) in the part of D, which lies in the interior of J_r . Then $S_{z_0}^{(D)}$ is identical with the intersection of all V_r . Let M_r be the closure of the union $US_z^{(D)}$ for all z' belonging to the part of C-E, which lies in the interior of J_r . Then $S_{z_0}^{*(C)}$ is identical with the intersection of all M_r . Let (P) denote the class of functions w = f(z) which are single-valued and pseudoanalytic in D and for which the integral

$$\int^{\infty} \frac{dr}{rD(r)}$$
(1)

diverges, where D(r) is the smallest upper bound of the 'Dilatationsquotient's' $D_{*|w}$ of w = f(z) on the part of C_r which lies in D.

^{1) &#}x27;Capacity' means logarithmic capacity in this paper.

²⁾ G.C. Evans: Monatshefte f. Math. u. Phys. 43 (1936).

³⁾ O. Teichmüller: Deutsche Math. 3 (1938).