135. On Linear Modulars.

By Sadayuki YAMAMURO.

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1951.)

Let R be a modulared semi-ordered linear space' with a modular m. If R is semi-regular, we can introduce into R two sorts of norms, namely, the first norm ||a|| ($a \in R$) and the second norm ||a||| ($a \in R$), satisfying the condition

 $||| a ||| \le || a || \le 2 ||| a |||$ (a εR).

It is proved that, if m is linear or singular³, then we have (*) ||a|| = |||a||| $(a \in R)$.

In this paper we will prove the converse, that is:

Theorem. If a modulared semi-ordered linear space R with a modular m is semi-regular and the condition (*) is always satisfied, then m is either linear or singular.

Suppose, in the sequel, that the condition (*) is satisfied and we denote the common value by ||a|| ($a \in R$).

Lemma 1. The first norm and the second norm by the conjugate modular \overline{m} of m coincide.

Proof. The first norm by \overline{m} is the conjugate norm of the second norm by m, and the second norm by \overline{m} is the conjugate norm of the first norm by m. Hence our assertion is obtained.

Lemma 2. For a element a such that ||a|| = 1 + m(a), we have m(a) = 0.

Proof. Suppose $m(a) \ge 1$. Then we have $m(a) \ge ||a||$ by the definition of the second norm, contradicting the assumption. Thus we have m(a) < 1, and hence $||a|| \le 1^{3}$. Therefore, from the assumption, we conclude m(a) = 0.

Lemma 3. If there is a simple domestic element a satisfying the condition m(a) = 1, then m is a linear modular on [a]R.

Proof. As a is simple and domestic, we can find a positive element \overline{a} of the conjugate space \overline{R} of R such that

$$\overline{a}(a) = \overline{m}(\overline{a}) + m(a)$$
, and $[\overline{a}]^R = [a]$.

From this relation, we conclude $|| \bar{a} || = \bar{a}(a) = \bar{m}(\bar{a}) + 1$, because, for the first norm $|| \bar{a} ||$ by \bar{m} , we have

$$\| \overline{a} \| = \sup_{m(\varepsilon) \leq 1} | \overline{a}(x) |$$
, and $| \overline{a}(x) | \leq \overline{m}(\overline{a}) + m(x)$ ($x \in \mathbb{R}$)

Thus we obtain $\overline{m}(\overline{a}) = 0$ by the previous lemma.

¹⁾ H. Nakano: Modulared semi-ordered linear spaces. Tokyo Math. Book Series, Vol. I (1950), p. 153.

²⁾ ibid., p. 184.

³⁾ ibid., p. 181.