## 135. On Linear Modulars.

By Sadayuki Yamamuro.

(Comm. by K. Kunugi, m.J.A., Dec. 12, 1951.)
Let $R$ be a modulared semi-ordered linear space) ${ }^{\text {1 }}$ with a modular $m$. If $R$ is semi-regular, we can introduce into $R$ two sorts of norms, namely, the first norm $\|a\|(a \in R)$ and the second norm $|||a||(a \varepsilon R)$, satisfying the condition

$$
|\|a\| \leqq\|a\| \leqq 2|\|a\| \| \quad(a \varepsilon R)
$$

It is proved that, if $m$ is linear or singular ${ }^{2}$, then we have

$$
\begin{equation*}
\|a\|=\|a \mid\| \quad(a \varepsilon R) \tag{*}
\end{equation*}
$$

In this paper we will prove the converse, that is:
Theorem. If a modulared semi-ordered linear space $R$ with a modular $m$ is semi-regular and the condition (*) is always satisfied, then $m$ is either linear or singular.

Suppose, in the sequel, that the condition (*) is satisfied and we denote the common value by $\|a\|(a \varepsilon R)$.

Lemma 1. The first norm and the second norm by the conjugate modular $\bar{m}$ of $m$ coincide.

Proof. The first norm by $\bar{m}$ is the conjugate norm of the second norm by $m$, and the second norm by $\bar{m}$ is the conjugate norm of the first norm by $m$. Hence our assertion is obtained.

Lemma 2. For a element a such that $\|a\|=1+m(a)$, we have $m(a)=0$.

Proof. Suppose $m(a) \geqq 1$. Then we have $m(a) \geqq\|a\|$ by the definition of the second norm, contradicting the assumption. Thus we have $m(a)<1$, and hence $\|a\| \leqq 1^{3}$. Therefore, from the assumption, we conclude $m(a)=0$.

Lemma 3. If there is a simple domestic element a satisfying the condition $m(a)=1$, then $m$ is a linear modular on $[a] R$.

Proof. A.s $a$ is simple and domestic, we can find a positive element $\bar{a}$ of the conjugate space $\bar{R}$ of $R$ such that

$$
\bar{a}(a)=\bar{m}(\bar{a})+m(a), \quad \text { and } \quad[\bar{a}]^{R}=[a] .
$$

From this relation, we conclude $\|\bar{a}\|=\bar{a}(a)=\bar{m}(\bar{a})+1$, because, for the first norm $\|\bar{a}\|$ by $\bar{m}$, we have

$$
\|\bar{a}\|=\sup _{m(x) \leq 1}|\bar{a}(x)|, \quad \text { and } \quad|\bar{a}(x)| \leqq \bar{m}(\bar{a})+m(x) \quad(x \in R)
$$

Thus we obtain $\bar{m}(\bar{a})=0$ by the previous lemma.

[^0]
[^0]:    1) H. Nakano : Modulared semi-ordered linear spaces. Tokyo Math. Book Series, Vol. I (1950), p. 153.
    2) ibid., p. 184.
    3) ibid., p. 181.
