42. Probability-theoretic Investigations on Inheritance. VIII $_{3}$. Further Discussions on Non-Paternity Problems.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and
Department of Legal Medicine, Tokyo University.
(Comm. by T. Furuhata, m.J.A., March 12, 1952.)

3. Sub-probability with respect to a type of child.

We now turn to the third standpoint stated at § 1, namely, the decomposition of whole probability of proving non-paternity into sub-probabilities with respect to a type of child.

Necessary components for the purpose have already been established. In fact, the table for $V(i j ; h k)$ listed in § 2 of VII remains here also utile. The results which will anew be obtained in the present section are those derived by summing up the quantities $P(i j ; h k)$ with respect to all the possible types $A_{l j}$ of wife (mother of child), while, in (2.3) of VII, the summation has been extended over the types $A_{h k}$ of child. We thus introduce here the quantity

$$
\begin{equation*}
R(i j)=\sum_{h, k} P(h k ; i j) \tag{3.1}
\end{equation*}
$$

the letters i, j, h, k being interchanged only for the sake of convenience.

First, in case of a homozygotic child $A_{i k}$, we obtain

$$
\begin{align*}
R(i i) & =P(i i ; i i)+\sum_{j \neq i} P(i j ; i i) \\
& =p_{i}^{3}\left(1-p_{i}\right)^{2}+\sum_{j \neq i} p_{i}^{2} p_{j}\left(1-p_{i}\right)^{2} \tag{3.2}\\
& =p_{i}^{2}\left(1-p_{i}\right)^{2} .
\end{align*}
$$

Next, in case of a heterozygotic child $A_{i j}(i \neq j)$, we obtain

$$
\begin{align*}
R(i j)= & P(i i ; i j)+P(j j ; i j)+P(i j ; i j)+\sum_{h \neq i, j}(P(i h ; i j)+P(j h ; i j)) \\
= & p_{i}^{2} p_{j}\left(1-p_{j}\right)^{2}+p_{t} p_{j}^{2}\left(1-p_{i}\right)^{2}+p_{i} p_{j}\left(p_{i}+p_{j}\right)\left(1-p_{i}-p_{j}\right)^{2} \\
& +\sum_{h \neq i, j}\left(p_{i} p_{j} p_{h}\left(1-p_{j}\right)^{2}+p_{i} p_{j} p_{h}\left(1-p_{i}\right)^{2}\right) \tag{3.3}\\
= & p_{i} p_{j}\left(2-2\left(p_{t}+p_{j}\right)+p_{i}^{2}+p_{j}^{2}-4 p_{i} p_{j}+3 p_{i} p_{j}\left(p_{i}+p_{j}\right)\right) .
\end{align*}
$$

The partial sums corresponding to (3.1) to (3.3), (3.5) and (3.7) of VII now become

$$
\begin{equation*}
\sum_{i=1}^{m} P(i i ; i i)=S_{3}-2 S_{4}+S_{5} \tag{3.4}
\end{equation*}
$$

