41. Probability-theoretic Investigations on Inheritance. VIII ${ }_{2}$. Further Discussionson Non-Paternity Problems.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University.
(Comm. by T. Furuhata, m.J.a., March 12, 1952.)

$2^{\text {bis }}$. Sub-probability with respect to a type of wife.
We have hitherto considered a probability with respect to each fixed couple. If a frequency of mating is also to be taken into account, the probability has only to be multiplied by a respective mating-frequency; the resulting probability will be, corresponding to (2.2) of VII, denoted by

$$
\begin{align*}
& W(i j, h k) \equiv \overline{A_{i j}} \overline{A_{h k}} U(i j, h k) \\
& \quad(i, j, h, k=1, \ldots, m ; i \leqq j ; h \leqq k) 。 \tag{2.11}
\end{align*}
$$

We put further, corresponding to (2.3) of VII,

$$
\begin{equation*}
W(i j)=\sum_{h, k} W(i j, h k), \tag{2.12}
\end{equation*}
$$

the summation extending over all possible sets of suffices, i.e., h, $k=1, \ldots, m ; h \leqq k$. The quantity $W(i j)$ thus defined represents the sub-probability of proving non-paternity with respect to the fixed type $A_{i j}$ of wives. As already noticed in $\S 1$, it must coincide just with the quantity introduced in (2.3) of VII; namely, the identical relation holds:

$$
\begin{equation*}
W(i j)=P(i j) \tag{2.13}
\end{equation*}
$$

We shall now verify in a direct manner the validity of the identity (2.13), to make sure. For that purpose, we first consider a homozygotic wife $A_{i i}$. We then get, corresponding to (2.12) of VII,

$$
\begin{equation*}
W(i i)=W(i i, i i)+\sum_{h \neq i}(W(i i, i h)+W(i i, h h))+\sum_{h, k \neq i}^{\prime} W(i i, h k) . \tag{2.14}
\end{equation*}
$$

Substituting the respective values of (2.11) obtained by (2.2) to (2.5) into the right-hand side of (2.14) and then remembering the first relation (1.16) of VII, we get

$$
\begin{aligned}
W(i i)= & p_{i}^{4}\left(1-p_{i}\right)+\sum_{h \neq i}\left(2 p_{i}^{3} p_{h}\left(1-p_{i}-p_{h}\right)+p_{i}^{2} p_{h}^{2}\left(1-p_{h}\right)\right) \\
& \quad+\sum_{h, k \neq i}^{\prime} 2 p_{i}^{2} p_{h} p_{k}\left(1-p_{h}-p_{k}\right) \\
= & p_{i}^{2}\left\{p_{i}^{2}\left(1-p_{i}\right)+2 p_{i}\left(\left(1-p_{i}\right)^{2}-\left(S_{2}-p_{i}^{2}\right)\right)+S_{2}-p_{i}^{2}-\left(S_{3}-p_{i}^{3}\right)\right. \\
& \left.\quad+1-2 S_{2}-2 p_{i}\left(1-p_{i}-S_{2}\right)-\left(S_{2}-2 S_{3}\right)+2 p_{i}^{2}\left(1-2 p_{i}\right)\right\} \\
= & p_{i}^{2}\left(1-2 S_{2}+S_{3}\right),
\end{aligned}
$$

