58. On the Induced Characters of a Group.

By Masaru OSIMA.

Department of Mathematics, Okayama University. (Comm. by Z. SUETUNA, M.J.A., May 13, 1952.)

This short note is a preliminary report for the theory of induced characters of a group. The detailed proofs will be given elsewhere. The present study is closely related to the papers Brauer [1] and [3].

1. Let \mathfrak{G} be a group of finite order $g=q^ag'$ where q is a prime number and (g', q)=1 and let \mathfrak{Q} be a fixed q-Sylow-subgroup of \mathfrak{G} . Let C_1, C_2, \ldots, C_n be the classes of conjugate elements in \mathfrak{G} . Further let C_1, C_2, \ldots, C_n be the classes of conjugate elements which contain the elements in \mathfrak{Q} . We denote by $Q_1=1, Q_2, \ldots, Q_h (Q_i \in \mathfrak{Q})$ a complete system of representatives for the classes $C_i(i=1,2,\ldots,h)$. Let $g_i=g/n_i$ be the number of elements in C_i , so that n_i is the order of the normalizer $\mathfrak{N}(Q_i)$ of Q_i in \mathfrak{G} . We set $n_i=q_in_i'$ where $(n_i', q)=1$. q_i is called the q-part of n_i . Let $\varsigma_1, \varsigma_2, \ldots, \varsigma_n$ and $\vartheta_1, \vartheta_2, \ldots, \vartheta_m$ be distinct irreducible characters of \mathfrak{G} and \mathfrak{Q} . In what follows we shall always take ς_1 and ϑ_1 to be the characters of the 1-representations of \mathfrak{G} and \mathfrak{Q} . If ϑ_{γ}^* is the character of \mathfrak{G} induced from ϑ_{γ} , then we have the following Frobenius formulas

(1)
$$\begin{cases} \zeta_{\mu}(Q) = \sum_{\nu} r_{\mu\nu}\vartheta_{\nu}(Q) & \text{(for } Q \text{ in } \mathbb{Q}) \\ \vartheta_{\nu}^{*}(G) = \sum_{\mu} r_{\mu\nu}\zeta_{\mu}(G) & \text{(for } G \text{ in } \mathbb{G}), \end{cases}$$

where

(2)
$$r_{11}=1, r_{1\nu}=0 \quad (\nu=1).$$

As is well known, the rank of $M=(r_{\mu\nu})$ is h. We can prove, by the similar way as in Brauer [3]¹⁾, the following

Lemma 1. $M = (r_{\mu\nu})$ contains a minor of degree h which is not divisible by q.

We set

$$R_1 = egin{pmatrix} r_{11} & r_{12} & \ldots & r_{1\hbar} \ r_{21} & r_{22} & \ldots & r_{2\hbar} \ \ldots & \ldots & \ldots \ r_{\hbar 1} & r_{\hbar 2} & \ldots & r_{\hbar \hbar} \end{pmatrix}.$$

Then we may assume without restriction that

¹⁾ We can somewhat simplify Brauer's original proof.