84. Probability-theoretic Investigations on Inheritance. XII ${ }_{2}$. Probability of Paternity.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo Medical and Dental University. (Comm. by T. Furuhata, m.J.a., July 12, 1952.)

3. Paternity on two children family.

Similar problems as above will also be discussed with respect to two-children family. Let a fixed mother-children combination $\left(A_{i j} ; A_{n k}, A_{f g}\right)$ be given, and C_{1} be a cause that a presented man is really a father of the children and C_{2} be another cause that he is not their father. We suppose here again that the probabilities a priori of these mutually exclusive causes are both equal to $1 / 2$. The probability of an event that, under the cause \boldsymbol{C}_{1}, a mating $A_{a b} \times A_{i j}$ produces the children $A_{h k}$ and $A_{f g}$ has already outlined in $\S 3$ of IV, which will be denoted by

$$
\begin{equation*}
\lambda(a b, i j ; h k, f g) . \tag{3.1}
\end{equation*}
$$

On the other hand, under the cause C_{2}, a mother $A_{i j}$, together with a common father, produces children $A_{n k}$ and $A_{f g}$ with the probability

$$
\begin{equation*}
\pi(i j ; h k, f g) / \bar{A}_{i j} \tag{3.2}
\end{equation*}
$$

Hence, in view of the Bayes' theorem, for a given mother-children combination ($A_{i j} ; A_{l k}, A_{f g}$), the probability a posteriori of a man $A_{a b}$ to be a true father, i. e., his probability of paternity, is expressed by

$$
\begin{equation*}
\Lambda(i j ; h k, f g ; a b)=\frac{\lambda(a b, i j ; h k, f g)}{\lambda(a b, i j ; h k, f g)+\pi(i j ; h k, f g) / \bar{A}_{i j}} . \tag{3.3}
\end{equation*}
$$

The value of the last expression is determined for every possible quadruple as follows; different letters indicating different genes.

$$
\begin{array}{rlrl}
\Lambda(i i ; i i, i i ; i i) & =\frac{2}{2+p_{i}\left(1+p_{i}\right)}, & \Lambda(i i ; i i, i i ; i h) & =\frac{1}{1+2 p_{i}\left(1+p_{i}\right)} ; \\
\Lambda(i i ; i i, i h ; i h) & =\frac{1}{1+2 p_{i} p_{h}} ; & \Lambda(i i ; i h, i h ; h h)=\frac{2}{2+p_{h}\left(1+p_{h}\right)}, \\
\Lambda(i i ; i h, i h ; i h) & =\frac{1}{1+2 p_{h}\left(1+p_{h}\right)}, & \Lambda(i i ; i h, i h ; h k)=\frac{1}{1+2 p_{h}\left(1+p_{h}\right)} ; \tag{3.4}\\
\Lambda(i i ; i h, i k ; h k)=\frac{1}{1+2 p_{h} p_{k}} ; &
\end{array}
$$

