75. On Rings of Operators of Infinite Classes. II.

By Haruo Sunouchi.
Mathematical Institute, Tôhoku University, Sendai.
(Comm. by Z. Suetuna, m.J.a., July 12, 1952.)

In the previous paper [5], we have extended the notion of the 6-operation, introduced by Dixmier [1], to the rings of operators of the infinite classes. But the statements of the last section of [5] are not complete, therefore we will precisely discuss them with some modifications. Especially, we shall clarify the relation between the finiteness and the E-finiteness of a projection. By the way, we obtain a functional characterisation of the abelian rings of operators, which is a generalisation of von Neumann's one in separable cases [3; Theorem 6].

1. Firstly we shall remember some definitions. Let \boldsymbol{M} be a ring of operators in a Hilbert space \boldsymbol{H}, and denote the center by \boldsymbol{M}^{9}. A projection $P \in \boldsymbol{M}$ is called finite if, for any projection $Q \in$ $M, P \sim Q \leqq P$ implies $Q=P$, and infinite if this is not the case. If the unit element $I \in \boldsymbol{M}$ is finite, then we say \boldsymbol{M} is of a finite class, and otherwise \boldsymbol{M} is of an infinite class. As remarked in [5], any ring of operators \boldsymbol{M} is decomposed into the direct sum of three rings of operators, $\boldsymbol{M}^{f}, \boldsymbol{M}^{i}$, and $\boldsymbol{M}^{p i}$, say; \boldsymbol{M}^{f} is of the finite class, \boldsymbol{M}^{i} is the one, in which every central projection is infinite but there exists a finite projection in it, and $\boldsymbol{M}^{p i}$ is in the other case. We say $\boldsymbol{M}^{p i}$ is of the purely infinite class. For a while, we shall assume that $\boldsymbol{M}=\boldsymbol{M}^{i}$, because, in \boldsymbol{M}^{f}, the Dixmier theory is applicable, and in $\boldsymbol{M}^{p i}$, our arguments are not available.

By a central envelope of a finite projection E we mean the central projection Z, which is the least upper bound of $F \in \boldsymbol{M}$ equivalent to E. Then there is a system of finite projections $E_{\alpha} \in$ \boldsymbol{M}, such that each E_{α} has no comparable part to others and the corresponding central envelopes Z_{α} span the unit I. Denote $E=\Sigma$ $\oplus E_{\alpha}$ for this system.

Lemma 1.1. Let E_{α} be the finite projections in \boldsymbol{M}, which have no comparable parts to each other, then $E=\Sigma \oplus E_{\alpha}$ is also finite.

Proof. The assumption is equivalent to that the corresponding central envelopes Z_{α} are mutually orthogonal. Let $Z=\sum \oplus Z_{\alpha}$, then Z is obviously the central envelope of E. Any projection $F \in \boldsymbol{M}_{(Z)}{ }^{1)}$ is written in the form: $F=\sum \oplus F_{\alpha}$, where $F_{\alpha}=F Z_{\alpha}$. Naturally

[^0]
[^0]: 1) $\boldsymbol{M}_{(E)}$ denotes the set of all $A_{(E)}=E A=A E, A \in M$.
